强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下)

本文主要是介绍强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

马尔可夫决策过程组成

策略

智能体的策略policy通常用 π \pi π 表示,即 π ( a ∣ s ) = P ( A t = a ∣ S t = s ) \pi (a|s)=P(A_t=a|S_t=s) π(as)=P(At=aSt=s) ,在输入状态s的情况下采取动作a的概率。

状态价值函数

价值定义为从状态出发遵循策略能获得的期望回报,数学表达为:
V π ( s ) = E π [ G t ∣ S t = s ] V^{\pi}(s)=\mathbb{E}_\pi [G_t|S_t=s] Vπ(s)=Eπ[GtSt=s]

动作价值函数

遵循策略时,对当前状态 s 执行动作 a 得到的期望回报:
Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q^\pi(s,a)=\mathbb{E}_\pi[G_t|S_t=s,A_t=a] Qπ(s,a)=Eπ[GtSt=s,At=a]
在使用该策略的情况下,状态s的价值(期望回报)等于该状态下基于此策略采用所有动作的概率与相应价值相乘的和
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) V^\pi(s)=\sum_{a\in A}\pi(a|s)Q^\pi(s,a) Vπ(s)=aAπ(as)Qπ(s,a)

贝尔曼期望方程

在贝尔曼方程中加上“期望”二字是为了与接下来的贝尔曼最优方程进行区分。
V π ( s ) = E π [ G t ∣ S t = s ] = E π [ R t + γ G t + 1 ∣ S t = s ] \begin{aligned} V^{\pi}(s)&=\mathbb{E}_\pi [G_t|S_t=s]\\ &=\mathbb{E}_\pi [R_t+\gamma G_{t+1}|S_t=s] \end{aligned} Vπ(s)=Eπ[GtSt=s]=Eπ[Rt+γGt+1St=s]
因为 r 是奖励的期望,那么该策略下的价值为
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) ( r ( s , a ) + γ E π [ G t + 1 ∣ S t = s ] ) V^\pi(s)=\sum_{a\in A}\pi(a|s)(r(s,a)+\gamma \mathbb{E}_\pi [ G_{t+1}|S_t=s]) Vπ(s)=aAπ(as)(r(s,a)+γEπ[Gt+1St=s])
注意后面是 G t + 1 G_{t+1} Gt+1 ,而不是 G t G_t Gt ,那么就需要将下一个状态是什么的所有可能性包括在内进行计算,因此引出状态转移概率,得到状态价值函数的贝尔曼方程:
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) ( r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) V π ( s ′ ) ) V^\pi(s)=\sum_{a\in A}\pi(a|s)\left(r(s,a)+\gamma\sum_{s'\in S}p(s'|s,a)V^{\pi}(s')\right) Vπ(s)=aAπ(as)(r(s,a)+γsSp(ss,a)Vπ(s))
下一个状态的概率乘以下一个状态的期望,求和之后,则为所有可能发生的状态对应的期望的期望。

去掉前面的策略求和,可得动作价值函数的贝尔曼方程:
Q π ( s , a ) = r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) ∑ a ′ ∈ A π ( a ′ ∣ s ′ ) Q π ( s ′ , a ′ ) Q^{\pi}(s,a)=r(s,a)+\gamma\sum_{s^{\prime}\in S}p(s^{\prime}|s,a)\sum_{a^{\prime}\in A}\pi(a^{\prime}|s^{\prime})Q^\pi(s^{\prime},a^{\prime}) Qπ(s,a)=r(s,a)+γsSp(ss,a)aAπ(as)Qπ(s,a)

最优策略

总有一个策略大于等于所有策略,称之为最优策略。
V ∗ ( s ) = max ⁡ a ∈ A { r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) V ∗ ( s ′ ) } Q ∗ ( s , a ) = r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) max ⁡ a ′ ∈ A Q ∗ ( s ′ , a ′ ) \begin{gathered}V^*(s)=\max_{a\in\mathcal{A}}\{r(s,a)+\gamma\sum_{s^{\prime}\in\mathcal{S}}p(s^{\prime}|s,a)V^*(s^{\prime})\}\\Q^*(s,a)=r(s,a)+\gamma\sum_{s^{\prime}\in\mathcal{S}}p(s^{\prime}|s,a)\max_{a^{\prime}\in\mathcal{A}}Q^*(s^{\prime},a^{\prime})\end{gathered} V(s)=aAmax{r(s,a)+γsSp(ss,a)V(s)}Q(s,a)=r(s,a)+γsSp(ss,a)aAmaxQ(s,a)

这篇关于强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/577193

相关文章

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

PyCharm如何从C盘转移到D盘

《PyCharm如何从C盘转移到D盘》:本文主要介绍PyCharm如何从C盘转移到D盘的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm从C盘转移到D盘找到在C盘的pycharm,复制整个文件夹到D盘指定位置创建新的快捷方式转移C盘中Pych

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re