强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下)

本文主要是介绍强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

马尔可夫决策过程组成

策略

智能体的策略policy通常用 π \pi π 表示,即 π ( a ∣ s ) = P ( A t = a ∣ S t = s ) \pi (a|s)=P(A_t=a|S_t=s) π(as)=P(At=aSt=s) ,在输入状态s的情况下采取动作a的概率。

状态价值函数

价值定义为从状态出发遵循策略能获得的期望回报,数学表达为:
V π ( s ) = E π [ G t ∣ S t = s ] V^{\pi}(s)=\mathbb{E}_\pi [G_t|S_t=s] Vπ(s)=Eπ[GtSt=s]

动作价值函数

遵循策略时,对当前状态 s 执行动作 a 得到的期望回报:
Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q^\pi(s,a)=\mathbb{E}_\pi[G_t|S_t=s,A_t=a] Qπ(s,a)=Eπ[GtSt=s,At=a]
在使用该策略的情况下,状态s的价值(期望回报)等于该状态下基于此策略采用所有动作的概率与相应价值相乘的和
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) V^\pi(s)=\sum_{a\in A}\pi(a|s)Q^\pi(s,a) Vπ(s)=aAπ(as)Qπ(s,a)

贝尔曼期望方程

在贝尔曼方程中加上“期望”二字是为了与接下来的贝尔曼最优方程进行区分。
V π ( s ) = E π [ G t ∣ S t = s ] = E π [ R t + γ G t + 1 ∣ S t = s ] \begin{aligned} V^{\pi}(s)&=\mathbb{E}_\pi [G_t|S_t=s]\\ &=\mathbb{E}_\pi [R_t+\gamma G_{t+1}|S_t=s] \end{aligned} Vπ(s)=Eπ[GtSt=s]=Eπ[Rt+γGt+1St=s]
因为 r 是奖励的期望,那么该策略下的价值为
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) ( r ( s , a ) + γ E π [ G t + 1 ∣ S t = s ] ) V^\pi(s)=\sum_{a\in A}\pi(a|s)(r(s,a)+\gamma \mathbb{E}_\pi [ G_{t+1}|S_t=s]) Vπ(s)=aAπ(as)(r(s,a)+γEπ[Gt+1St=s])
注意后面是 G t + 1 G_{t+1} Gt+1 ,而不是 G t G_t Gt ,那么就需要将下一个状态是什么的所有可能性包括在内进行计算,因此引出状态转移概率,得到状态价值函数的贝尔曼方程:
V π ( s ) = ∑ a ∈ A π ( a ∣ s ) ( r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) V π ( s ′ ) ) V^\pi(s)=\sum_{a\in A}\pi(a|s)\left(r(s,a)+\gamma\sum_{s'\in S}p(s'|s,a)V^{\pi}(s')\right) Vπ(s)=aAπ(as)(r(s,a)+γsSp(ss,a)Vπ(s))
下一个状态的概率乘以下一个状态的期望,求和之后,则为所有可能发生的状态对应的期望的期望。

去掉前面的策略求和,可得动作价值函数的贝尔曼方程:
Q π ( s , a ) = r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) ∑ a ′ ∈ A π ( a ′ ∣ s ′ ) Q π ( s ′ , a ′ ) Q^{\pi}(s,a)=r(s,a)+\gamma\sum_{s^{\prime}\in S}p(s^{\prime}|s,a)\sum_{a^{\prime}\in A}\pi(a^{\prime}|s^{\prime})Q^\pi(s^{\prime},a^{\prime}) Qπ(s,a)=r(s,a)+γsSp(ss,a)aAπ(as)Qπ(s,a)

最优策略

总有一个策略大于等于所有策略,称之为最优策略。
V ∗ ( s ) = max ⁡ a ∈ A { r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) V ∗ ( s ′ ) } Q ∗ ( s , a ) = r ( s , a ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s , a ) max ⁡ a ′ ∈ A Q ∗ ( s ′ , a ′ ) \begin{gathered}V^*(s)=\max_{a\in\mathcal{A}}\{r(s,a)+\gamma\sum_{s^{\prime}\in\mathcal{S}}p(s^{\prime}|s,a)V^*(s^{\prime})\}\\Q^*(s,a)=r(s,a)+\gamma\sum_{s^{\prime}\in\mathcal{S}}p(s^{\prime}|s,a)\max_{a^{\prime}\in\mathcal{A}}Q^*(s^{\prime},a^{\prime})\end{gathered} V(s)=aAmax{r(s,a)+γsSp(ss,a)V(s)}Q(s,a)=r(s,a)+γsSp(ss,a)aAmaxQ(s,a)

这篇关于强化学习3——马尔可夫性质、马尔科夫决策、状态转移矩阵和回报与策略(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/577193

相关文章

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir