【Mquant】5:构建价差套利(一)

2024-01-06 10:40
文章标签 构建 价差 套利 mquant

本文主要是介绍【Mquant】5:构建价差套利(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.价差套利原理
  • 2. 跨期套利
  • 3. 套利实战
    • 3.1.投研分析
    • 3.2 价差特征分析
  • 4. 总结
  • 5. 参考


1.价差套利原理

价差套利是一种金融交易策略,通过利用不同市场或不同交易所之间的价格差异来获取利润。以下是价差套利的原理:

  1. 基本原则:价差套利的基本原则是同时在相关合约上建立一个多头部位和一个空头部位,以利用两个头寸之间的差值变化来获利。
  2. 跨交易所套利:在不同交易所之间进行套利是一种常见的价差套利策略。如果一个交易所的价格比另一个交易所高,可以在高价交易所卖出资产,在低价交易所买入等量的资产,从中获取差价利润。这种策略要求交易者在两个交易所分别持有一定数量的资产,并且需要注意交易手续费和资产转移的效率。
  3. 期现套利:期现套利是指利用现货市场和期货市场之间的价格差异进行套利。当期货合约的价格高于现货价格时,可以同时买入现货并卖出期货,通过差价获利。关键是确保买入的现货数量和卖出的期货数量相等,以减少风险。期现套利的收益率取决于差价的大小和持仓时间。
  4. 跨期套利:跨期套利是一种利用同一市场上不同交割月份的期货合约之间的价差进行套利的交易行为。投资者通过同时买入一个合约和卖出另一个合约,以期望在价格关系有利时将两种合约对冲平仓获利。跨期套利是套利交易中最常见的一种形式,也是股指期货市场上常见的套利策略之一。
  5. 风险:价差套利也存在一定的风险。例如,跨交易所套利可能面临盘口流动性不足、API响应慢或交易不成功等风险。期现套利可能面临现货价格上涨导致浮亏、保证金不足导致爆仓或套利规模过大导致流动性风险等问题

2. 跨期套利

跨期套利的基本原理是利用不同交割月份之间的价格差距出现变化时进行对冲,从中获得利润。当期货市场波动较大时,不同交割月份的合约价格差会出现偏离合理价差的情况。投资者可以根据交割制度,捕捉价格偏离区间的机会,同时总结价差走势规律,判断价差套利机会。

跨期套利可以分为牛市套利熊市套利。牛市套利是指投资者看多股市,认为较远交割期的期货合约涨幅将大于近期合约的涨幅,或者较远期的期货合约跌幅将小于近期合约的跌幅。熊市套利则相反,投资者认为较远交割期的期货合约跌幅将大于近期合约的跌幅,或者较远期的期货合约涨幅将小于近期合约的涨幅。

跨期套利还可以根据买卖方式分为买进套利卖出套利。买进套利是指投资者预期不同交割月份的期货合约的价差将扩大,他们会买入价格较高的合约,同时卖出价格较低的合约。卖出套利则相反,投资者预期不同交割月份的期货合约价差将缩小,他们会卖出价格较高的合约,同时买入价格较低的合约。

3. 套利实战

在数字货币交易市场,我们会发现大多数行情下,相同币种之间的不同交割合约会存在一定的价差,由于它们属于同一品种,本身价值不会有任何差别,而且涨跌趋势一致,相关性高。那么如果在它们价差低的时候买入,价差高的时候卖出,这样我们就可以赚取中间的这部分差价,这也就是卖出套利策略。不过在实际交易过程中,我们还需要考虑到交易滑点、手续费、极端行情下,价差有可能会走出趋势特征,这个时候采用买进套利策略会更优。

3.1.投研分析

我们准备了币安交易所所有带有交割合约币种的分钟线、小时线、日线数据。如何获取数据,请看教程
【Mquant】4:量化投研配置本地数据库,如果没有数据的同学也可以私信我,我会发给你所需要的数据。

  1. 用到的第一份数据是BTCUSDT_231229_BINANCE.csv,表示BTC近月合约高开低收价格数据
    在这里插入图片描述

  2. 用到的第二份数据是BTCUSDT_240329_BINANCE.csv,表示BTC远月合约高开低收价格数据
    在这里插入图片描述

  3. 投研第一步,对数据进行处理,使用jupyter交互式环境,观察数据样貌

    import pandas as pd
    import plotly.express as pxdf1 = pd.read_csv("BTCUSDT_231229_BINANCE.csv",index_col="datetime")
    df1.head()df2 = pd.read_csv("BTCUSDT_240329_BINANCE.csv",index_col="datetime")
    df2.head()
    
  4. 构建价差数据集

    df_data  = pd.DataFrame({"BTC231229":df1["close"],"BTC240329":df2["close"]
    })
    # 清除空值数据
    df_data.dropna(inplace=True)
    df_data["spread"] = df_data["BTC240329"] - df_data["BTC231229"]
    # 绘制图像
    px.line(df_data["spread"])
    

    在这里插入图片描述

  5. 保存数据集

    # 保存数据
    df_data.to_csv("spread_data.csv")
    

3.2 价差特征分析

价差特征分析是指利用价格或指标之间的差距来进行分析和预测的方法。通过计算不同时间点或不同指标之间的差值,可以揭示出价格或指标的变化趋势和差异,从而帮助我们做出相应的决策。以下是价差特征分析的一些常见应用和方法:

  1. 技术指标的价差分析:价差分析也可以用于技术指标的计算和分析。通过计算不同指标之间的差值,可以得到更多的信息。例如,通过计算不同移动平均线之间的差值,可以判断价格的趋势和变化。

  2. 历史统计特征的价差分析:价差分析还可以用于计算历史统计特征。通过计算不同时间窗口内的统计特征的差值,可以得到更多的信息。

  3. 特征生成和价差分析:在特征工程中,可以利用价差分析生成新的特征。通过计算不同特征之间的差值,可以得到更多的特征。例如,计算不同指标之间的差值,可以生成新的特征来描述指标之间的关系。

下面我们开始利用技术指标来构建价差分析:

  1. 对数据进行描述性分析,观察数据样貌,提供了对数据集整体情况的认知和理解。通过描述性分析,我们可以了解数据的集中趋势、离散程度、分布形状和异常值等特征,为进一步的数据分析和解释提供了基础。
    import pandas as pd
    import plotly.graph_objects as go
    # 读入数据
    df = pd.read_csv("spread_data.csv")
    # 描述性分析
    df["spread"].describe()
    
    显示数据的均值、标准差、最小值、四分位数、最大值
    在这里插入图片描述
  2. 观察数据时间序列上的滚动特征特征
    # 滚动特征
    df["ma20"] = df["spread"].rolling(20).mean()
    df["std20"] = df.spread.rolling(20).std()
    df["max20"] = df.spread.rolling(20).max()
    df["min20"] = df.spread.rolling(20).min()
    df.tail()
    

在这里插入图片描述

  1. 图表绘制
# 图表绘制
data = [go.Scatter(x=df.index, y=df["spread"], name="spread"),go.Scatter(x=df.index, y=df["ma20"], name="ma"),go.Scatter(x=df.index, y=df["max20"], name="max"),go.Scatter(x=df.index, y=df["min20"], name="min"),
]fig = go.Figure(data=data)
fig.show()

在这里插入图片描述
在下图中我们发现有若干异常值,这些异常值可能是数据采集或记录过程中的错误或特殊情况,也可能是当天发生比较大的行情波动,我们可以通过计算四分位数和绘制箱线图等方法来识别数据中的异常值,提高数据的准确性和可靠性。图中的指标也可以帮助我们了解数据的平均水平或典型值,从而更好地理解数据的整体特征和趋势。比如时间区域1就是明显的平稳状态,适用于卖出套利策略,时间区域2就是趋势状态,适用于买进套利策略。
在这里插入图片描述
4. 如何科学的分析一段周期内价差特征是否平稳呢?我们可以使用Adf检验方法。ADF检验(Augmented Dickey-Fuller test)是一种用于判断时间序列数据平稳性的统计检验方法,也被称为单位根检验。单位根检验是针对时间序列数据中是否存在单位根(unit root)这一统计特性进行的检验。单位根存在意味着序列是非平稳的,而平稳序列在许多时间序列模型中是必要的。

from statsmodels.tsa.stattools import adfuller
# 平稳序列检验
result = adfuller(df["spread"])
# 打印结果
print('ADF 统计值: %f' % result[0])
print('p-value: %f' % result[1])
print('临界值:')
for k, v in result[4].items():print('\t%s: %.3f' % (k, v))

在这里插入图片描述
判断一个序列平不平稳就是看p-value的值是否小于0.05,如果小于0.05,则说明序列是平稳的,大于0.05则不平稳。在实际交易市场中,0.05这个阈值可能很难达到,我们可以降低要求,比如阈值调整到0.1,小于0.1我们也认为序列平稳。在平稳的时间序列下,我们就可以进行卖出价差套利。

4. 总结

本文介绍了价差套利的原理和跨期套利的概念。价差套利是一种金融交易策略,通过利用不同市场或交易所之间的价格差异来获取利润。解释了价差套利的基本原则,并介绍了跨交易所套利、期现套利和跨期套利等不同的套利策略。同时,提到了价差套利存在的一定风险,如交易所流动性不足和风险管理等问题。

重点介绍了跨期套利的原理和分类,包括牛市套利和熊市套利,以及买进套利和卖出套利。提供了数字货币交易市场中的套利实战案例,说明如何利用不同交割合约之间的价差进行套利交易。最后,介绍了投研分析和价差特征分析的方法,以帮助读者更好地理解和应用价差套利策略。

本文详细介绍了价差套利的原理、不同的套利策略和实战案例,并提供了投研分析和价差特征分析的方法,使读者能够更好地理解和应用价差套利策略。再下一个章节,作者将带领读者从0-1打造一个价差套利策略。

5. 参考

  1. 价差套利 - MBA智库百科
  2. 套利原理 - 廖雪峰的官方网站
  3. 进阶学堂–套利交易_进阶学堂_中信证券 CITIC Securities
  4. 金融知识普及月| 什么是股指期货跨期套利
  5. 一文读懂跨期套利 - 知乎
  6. 油脂各类价差及套利季节性分析
  7. 【夏宇聊交易】价差特征对交易的影响 - 知乎
  8. 单位根检验 - MBA智库百科

这篇关于【Mquant】5:构建价差套利(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576101

相关文章

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处