【数值分析】非线性方程求根,二分法,割线法,matlab实现

2024-01-06 07:04

本文主要是介绍【数值分析】非线性方程求根,二分法,割线法,matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 基本问题

收敛阶
lim ⁡ k → ∞ ∣ e k + 1 ∣ ∣ e k ∣ r = C > 0 , r 为收敛阶 \lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|}^r=C>0 \,\,,\,\, r为收敛阶 klimekek+1r=C>0,r为收敛阶

2. 二分法

二分法是线性收敛的,如果指定精度 ϵ { \epsilon } ϵ ,则最多需要迭代步数
k = ⌈ log ⁡ 2 ( b − a ϵ ) ⌉ k= \lceil \log_2(\frac{b-a}{\epsilon }) \rceil k=log2(ϵba)⌉
matlab实现

%% 二分法例子
f = @(x) x^3-x-1;
format long
[x,i] = bisect(f,1,2,1e-5,1000)%% 二分法求非线性方程的根
% 输入函数,范围,精度,最大迭代次数
% 输出根,迭代次数
function [x,i] = bisect(f,a,b,eps,max_iter)if sign(f(a))~=sign(f(b))for i = 1:max_iter  c = a/2+b/2;if (b-a)<eps || abs(f(c))<epsx = c;breakendif sign(f(a))==sign(f(c))a = c;elseb = c;endendend
end

3. 不动点迭代加速

不动点 x = x ∗ {x=x ^{*} } x=x
x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)
x k + 1 − x ∗ = ϕ ( x k ) − ϕ ( x ∗ ) = ϕ ′ ( ξ k ) ( x k − x ∗ ) , ξ k ∈ ( x k , x ∗ ) x_{k+1}-x ^{*} =\phi(x_k)-\phi(x ^{*} )=\phi'(\xi_k)(x_k-x ^{*} ) \,\,,\,\, \xi_k\in(x_k,x ^{*} ) xk+1x=ϕ(xk)ϕ(x)=ϕ(ξk)(xkx),ξk(xk,x)
let ϕ ′ ( ξ k ) = L \text{let} \,\,\, \phi'(\xi_k) =L letϕ(ξk)=L
x ∗ ≈ x k + 1 − L x k 1 − L = ϕ ˉ ( x ) x ^{*} \approx \frac{x_{k+1}-Lx_k}{1-L}=\bar\phi(x) x1Lxk+1Lxk=ϕˉ(x)
为加速后的不动点迭代格式。

6. 割线法

割线法比起牛顿迭代法不需要计算导数。
双点割线法
需要知道两个的函数初始值,不需要函数值异号。迭代公式如下:
x k + 1 = x k − f ( x k ) x k − x k − 1 f ( x k ) − f ( x k − 1 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{k-1}}{f(x_k)-f(x_{k-1})} xk+1=xkf(xk)f(xk)f(xk1)xkxk1
收敛阶:
r = 5 + 1 2 ≈ 1.618 r= \frac{\sqrt{5}+1}{2} \approx 1.618 r=25 +11.618

matlab编程实现

%%  割线法例子
f = @(x) x-sin(x)-0.5;
[x,e,i] = cutSolve(f,1.4, 1.6, 0.01, 100)%% 双点割线法
% 输入函数,根所在的区间下限上限,精度,最大迭代次数
% 输出根,根的值,迭代次数
function [x,e,i] = cutSolve(f,a,b,eps,max_iter)x0 = a;x1 = b;for i = 1:max_iterx = -f(x0)*(x1-x0)/(f(x1)-f(x0))+x0if abs(x-x1)<=epse = abs(f(x));break;endx0=x1;x1=x;end
end

单点割线法
固定初始点,有
x k + 1 = x k − f ( x k ) x k − x 0 f ( x k ) − f ( x 0 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{0}}{f(x_k)-f(x_{0})} xk+1=xkf(xk)f(xk)f(x0)xkx0
算是一种不动点迭代。

这篇关于【数值分析】非线性方程求根,二分法,割线法,matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575566

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配