从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法

本文主要是介绍从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PhaseFinder

## 概览,不翻译了,大家自己看吧
The PhaseFinder algorithm is designed to detect DNA inversion mediated phase variation in bacterial genomes using genomic or metagenomic sequencing data. It works by identifying regions flanked by inverted repeats, mimicking their inversion in silico, and identifying regions where sequencing reads support both orientations. Here, we define phase variation as "a process employed by bacteria to generate frequent and reversible changes within specific hypermutable loci, introducing phenotypic diversity into clonal populations”. Not every region detected by PhaseFinder will directly result in phase variation, but the results should be highly enriched for regions that do. 

github: https://github.com/XiaofangJ/PhaseFinder

## Prerequisites,安装依赖
+ [Biopython](https://biopython.org/)
+ [pandas](https://pandas.pydata.org)
+ [samtools](http://samtools.sourceforge.net/) (>=1.4)
+ [bowtie](https://github.com/BenLangmead/bowtie)(>=version 1.2.0)
+ [einverted](http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/einverted.html)
+ [bedops](https://bedops.readthedocs.io/en/latest/)
+ [bedtools](https://bedtools.readthedocs.io/en/latest/)

To install PhaseFinder,安装

git clone git@github.com:nlm-irp-jianglab/PhaseFinder.git
cd PhaseFinder
conda env create --file environment.yml
conda activate PhaseFinder

快速开始
All you need to get started is a genome (in fasta format) you would like to search for invertible DNA regions and genomic sequencing data (preferrably Illumina in fastq format) from the same organism, or metagenomic sequencing data from a sample containing the organism (preferrably Illumina in fastq format). 

To test PhaseFinder, you can use the example files (genome: test.fa, genomic data: p1.fq, p2.fq) Example:

# Identify regions flanked by inverted repeats 
python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -g 15 85 -p # Mimic inversion
python PhaseFinder.py create -f ./data/test.fa -t ./data/test.einverted.tab -s 1000 -i ./data/test.ID.fasta# Identify regions where sequencing reads support both orientations 
python PhaseFinder.py ratio -i ./data/test.ID.fasta -1 ./data/p1.fq -2 ./data/p2.fq -p 16 -o ./data/out

If successful, the output will be in data/out.ratio.txt

In this example, there is one real example of an invertible DNA region "am_0171_0068_d5_0006:81079-81105-81368-81394" because only this region has reads supporting both the F and R orientation. 

---

教程Tutorial
1. Generate a position table of regions flanked by inverted repeats 
Users can identify inverted repeats using the "PhaseFinder.py locate" command, or generate their own table.

1.1. Generate the position table with the PhaseFinder script

Usage: PhaseFinder.py locate [OPTIONS]Locate putative inverted regionsOptions:-f, --fasta PATH        Input genome sequence file in fasta format[required]-t, --tab PATH          Output table with inverted repeats coordinates[required]-e, --einv TEXT         Einverted parameters, if unspecified run withPhaseFinder default pipeline-m, --mismatch INTEGER  Max number of mismatches allowed between IR pairs,used with -einv (default:3)-r, --IRsize INTEGER    Max size of the inverted repeats, used with -einv(default:50)-g, --gcRatio MIN MAX   The minimum and maximum value of GC ratio-p, --polymer           Remove homopolymer inverted repeats--help                  Show this message and exit.

Input: A fasta file containing the genome sequence
Output: A table file containing the postion information of invereted repeats in the genome

Examples:
* Run the default PhaseFinder locate parameters

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab 

Run the default PhaseFinder locate parameters and remove inverted repeats with GC content lower than 15% and higher than 85% or with homopolymers

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -g 15 85 -p 

* Run with the specified einverted parameters "-maxrepeat 750 -gap 100 -threshold 51 -match 5 -mismatch -9" 

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -e "-maxrepeat 750 -gap 100 -threshold 51 -match 5 -mismatch -9" 


1.2. Generate the position table with other tools
You can identify regions flanked by inverted repeats directly with tools such as [einverted](http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/einverted.html) and [palindrome](http://emboss.sourceforge.net/apps/cvs/emboss/apps/palindrome.html). 

Prepare the output into the following format:

A table file with five columns (tab delimited):

 Column name | Explanation                                                   |
-------------|---------------------------------------------------------------|Scaffold    | The scaffold or contig name where the inverted repeat is detectedpos A       | The start coordinate of the first inverted repeat (0-based)pos B       | The end coordinate of the first inverted repeat (1-based)pos C       | The start coordinate of the second inverted repeat (0-based)pos D       | The end coordinate of the second inverted repeat (1-based)---

2. Mimic inversion in silico to create a database of inverted sequences

Usage: PhaseFinder.py create [OPTIONS]Create inverted fasta fileOptions:-f, --fasta PATH         Input genome sequence file in fasta format[required]-t, --tab PATH           Table with inverted repeat coordinates  [required]-s, --flanksize INTEGER  Base pairs of flanking DNA on both sides of theidentified inverted repeats  [required]-i, --inv PATH           Output path of the inverted fasta file  [required]--help                   Show this message and exit.

Input
* The position table from step 1

 Output
* A fasta file containing inverted (R) and non-inverted (F) putative invertible DNA regions flanked by sequences of specified length (bowtie indexed)
* A table file (with suffix ".info.tab") describing the location of inverted repeats in the above fasta file---
3. Align sequence reads to inverted sequence database and calculate the ratio of reads aligning to the F or R orienation. 

Usage: PhaseFinder.py ratio [OPTIONS]Align reads to inverted fasta fileOptions:-i, --inv PATH         Input path of the inverted fasta file  [required]-1, --fastq1 PATH      First pair in fastq  [required]-2, --fastq2 PATH      Second pair in fastq  [required]-p, --threads INTEGER  Number of threads-o, --output TEXT      Output prefix  [required]--help                 Show this message and exit.

输入 Input
* Output from step 2
* fastq file of genomic or metagenomic sequence used to verify DNA inversion
* Number of threads used for bowtie alignment and samtools process
输出Output
* A table file (with suffix ".ratio.txt") containing the reads that supporting either R or F orientation of invertible DNA

 Column name | Explanation                                                                 |
-------------|-----------------------------------------------------------------------------|
Sequence     | Putative invertible regions(Format:Scaffold:posA-posB-posC-posD)
Pe_F         | The number of reads supprting the F orientation with paired-end information
Pe_R         | The number of reads supprting the R orientation with paired-end information
Pe_ratio     | Pe_R/(Pe_F + Pe_R). The percent of reads supporting the R orientation with the paired-end method
Span_F       | The number of reads supporting the F orientation spanning the inverted repeat by at least 10 bp on either side
Span_R       | The number of reads supporting the R orientation spanning the inverted repeat by at least 10 bp on either side
Span_ratio   | Span_R/(Span_F + Span_R). The percent of reads supporting the R orientation with the spanning method. 

True invertible regions have reads supporting both the F and R orientation. We recommend combining the information from both the paired-end (Pe) and spanning (Span) methods to find valid invertible DNA regions. Our default is to classify a region as invertible if at least 1% of reads support the R orientation with a minimum Pe_R > 5 and Span_R > 3. 

4. (Optional) Subset for intergenic invertible DNA regions 

If you are especially interested in intergenic regulatory regions, such as promoters, you can remove predicted invertible regions overlapping with coding sequences (CDS). First, obtain an annotation for the genome of interest from the NCBI or that you genereate yourself in GFF3 format. Second, subsubset the annotation for CDS regions only. Third, use the following command to process the output of PhaseFinder step 3 to obtain a list of intergenic putative invertible DNA regions.

sed '1d' output_from_phasefinder.ratio.txt| awk '{print $1"\t"$0}'|sed 's/:/\t/;s/-[^\t]*-/\t/'|sortBed |closestBed  -a - -b annotation.gff  -d |awk '$20!=0{print $3}' > intergenic_IDR.txt

Citation
Jiang X, Hall AB, et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut, *Science* (2019) [DOI: 10.1126/science.aau5238](http://science.sciencemag.org/content/363/6423/181)http://science.sciencemag.org/content/363/6423/181

这篇关于从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575561

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

win10安装及配置Gradle全过程

《win10安装及配置Gradle全过程》本文详细介绍了Gradle的下载、安装、环境变量配置以及如何修改本地仓库位置,通过这些步骤,用户可以成功安装并配置Gradle,以便进行项目构建... 目录一、Gradle下载1.1、Gradle下载地址1.2、Gradle下载步骤二、Gradle安装步骤2.1、安

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置