LLM增强LLM;通过预测上下文来提高文生图质量;Spikformer V2;同时执行刚性和非刚性编辑的通用图像编辑框架

本文主要是介绍LLM增强LLM;通过预测上下文来提高文生图质量;Spikformer V2;同时执行刚性和非刚性编辑的通用图像编辑框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章首发于公众号:机器感知

LLM增强LLM;通过预测上下文来提高文生图质量;Spikformer V2;同时执行刚性和非刚性编辑的通用图像编辑框架

LLM Augmented LLMs: Expanding Capabilities through Composition

图片

本文研究了如何高效地组合现有的基础模型以实现新功能的问题,文章提出了CALM(Composition to Augment Language Models)方法,通过跨模型注意力机制来组合模型表示,以此实现新功能。CALM的主要特点是:(i) 通过“重用”现有LLM以及一些额外的参数和数据扩展LLM到新任务上;(ii) 保持现有模型权重不变,从而保留现有功能;(iii) 适用于不同领域和场景。将PaLM2-S与一个小模型相结合实现了最高13%的绝对提升,当PaLM2-S与特定代码模型相结合时,在代码生成和解释任务上的相对提升达到了40%,与完全微调后的模型相当。

Improving Diffusion-Based Image Synthesis with Context Prediction

图片

本文提出了一种名为ConPreDiff的扩散模型,该模型通过预测上下文来提高图像生成的语义连接性和质量。ConPreDiff在训练阶段使用一个上下文解码器来强化每个点的预测,但在推理时移除解码器。这一方法可应用于任意离散或连续的扩散backbones,且在无条件图像生成、文本到图像生成和图像补全任务中取得了显著优于之前方法的性能。

Spikformer V2: Join the High Accuracy Club on ImageNet with an SNN Ticket

图片

本文提出了一种新型的Spiking神经网络结构,称为Spiking Self-Attention(SSA)和Spiking Transformer(Spikformer),这种结构借鉴了生物神经网络的原理和Transformer的自注意力机制来提高性能。SSA机制通过使用基于脉冲的Query、Key和Value,消除了softmax的需要,并捕获稀疏视觉特征。此外,还开发了一种Spiking Convolutional Stem(SCS)结构来增强Spikformer。为了训练更大更深的Spikformer V2,引入了自监督学习(SSL)方法。实验结果表明,Spikformer V2在性能上优于先前的方法,并首次在ImageNet上实现了80%以上的准确率。

Understanding LLMs: A Comprehensive Overview from Training to Inference

图片

随着ChatGPT的引入,大语言模型(LLMs)在下游任务中的应用显著增加,低成本训练和部署成为未来发展趋势。本文回顾了大语言模型训练技术和推理部署技术的演变,并探讨了模型压缩、并行计算、内存调度和结构优化等主题。同时,本文还探索了LLMs的应用,并对其未来发展提供了见解。

Unified Diffusion-Based Rigid and Non-Rigid Editing with Text and Image Guidance

图片

现有的文本到图像编辑方法在刚性或非刚性编辑方面表现优秀,但在结合两者时却无法得到与文本提示对齐的输出。为了解决这些问题,本文提出了一种能够执行刚性和非刚性编辑的通用图像编辑框架。该方法利用双路径注入方案来处理各种编辑场景,并引入集成的自注意力机制来融合外观和结构信息。为了减少潜在的视觉伪影,还采用了潜码融合技术来调整中间潜码。与现有方法相比,该方法在实现精确和通用图像编辑方面取得了重大进展。

这篇关于LLM增强LLM;通过预测上下文来提高文生图质量;Spikformer V2;同时执行刚性和非刚性编辑的通用图像编辑框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575045

相关文章

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

一个Java的main方法在JVM中的执行流程示例详解

《一个Java的main方法在JVM中的执行流程示例详解》main方法是Java程序的入口点,程序从这里开始执行,:本文主要介绍一个Java的main方法在JVM中执行流程的相关资料,文中通过代码... 目录第一阶段:加载 (Loading)第二阶段:链接 (Linking)第三阶段:初始化 (Initia

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映