STC进阶开发(四)SPI协议、矩阵键盘、EEPROM

2024-01-06 00:20

本文主要是介绍STC进阶开发(四)SPI协议、矩阵键盘、EEPROM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

        这一期我们简单介绍一下SPI协议,然后我们学习一下矩阵键盘,了解EEPROM是干什么用的,话不多说,开整!

SPI协议

SPI(Serial Peripheral Interface)是一种同步串行通信协议,用于在嵌入式系统中连接微控制器(MCU)和外围设备(如传感器、存储器、显示器等)。SPI协议需要4根线进行数据传输,分别是:

  • SCLK:时钟信号线,由主设备控制时序,用于同步数据传输。
  • MOSI:主设备输出从设备输入线,主设备通过该线向从设备发送数据。
  • MISO:主设备输入从设备输出线,从设备通过该线向主设备发送数据。
  • SS:从设备片选线,用于选择与主设备通信的从设备。(其他叫法CS)

SPI协议支持全双工通信,意味着主设备和从设备可以同时发送和接收数据。SPI协议传输数据时采用的是先进先出的方式。

标准的SPI总共有4根线,包括:SCLK(时钟线)、MOSI(主机输出从机输入线)、MISO(主机输入从机输出线)和SS(片选线)。但是在实际的应用中,可能会根据需要添加其他的辅助信号线,如数据就绪信号等。因此,SPI的具体实现方式可能会有所不同。

SPI协议中的DC线是指数据/命令线(Data/Command line),有时也称作RS线(Register Select line)。它是用来控制从主设备到从设备传输的数据是命令还是普通数据的信号线。在许多液晶显示屏、OLED屏幕、触摸屏等设备中,SPI总线上的DC线通常用于指示传输的数据是图像数据还是命令数据,以便设备能够正确地解析和处理数据

SPI通讯的时序是由主设备(Master)发起的,在数据传输的过程中,需要进行时序的协调,具体流程如下:

  • 主设备(Master)通过片选信号(Slave Select)选择通信的从设备(Slave)。
  • 主设备(Master)向从设备(Slave)发送时钟信号(SCLK),并将数据从输出口(MOSI)发送到从设备(Slave)的输入口(MISO)。
  • 从设备(Slave)在每个时钟脉冲的下降沿采样输入口(MISO)的数据,并将数据从输出口(MOSI)发送回主设备(Master)的输入口(MISO)。
  • 当传输完成后,主设备(Master)取消片选信号(Slave Select),从设备(Slave)被释放。

具体的通讯流程时序可以根据实际应用情况进行调整,例如可以调整时钟信号的极性和相位、选择合适的时钟频率等。

矩阵键盘

简介

        矩阵键盘是一种常见的数字输入设备,由多行多列的按键组成。每个按键都有一个唯一的行列坐标,通过行列坐标可以确定按键的编号,从而实现对数字或字母的输入。

原理图

矩阵键盘的基本结构包括按键、行引脚和列引脚。按键一般是机械按键或触摸按键,行引脚和列引脚分别与矩阵键盘的行和列相连,用于检测按键的输入状态。

代码

因为矩阵按键和之前学的独立按键很相似,所以代码不做过多解析,基本注释都在代码上标明,我们直接通过位运算来设定中间值从而捕获到每个按键的状态。

获取按键状态
#include "GPIO.h"
#include "NVIC.h"
#include "Delay.h"
#include "UART.h"
#include "Switch.h"#define COL1 P03
#define COL2 P06
#define COL3 P07
#define COL4 P17#define ROW1 P34
#define ROW2 P35
#define ROW3 P40
#define ROW4 P41//判断按键的状态
#define IS_KEY_DOWN(row , col)  ((states & (1 << (row * 4 + col))) == 0)
#define IS_KEY_UP(row,col) ((states  & (1 << (row * 4 + col))) > 0)//设置按键的状态
#define SET_KEY_DOWN(row, col)   (states &= ~(1 << (row * 4 + col)))
#define SET_KEY_UP(row, col)  (states  |=  (1 << (row * 4 + col)))//按键的状态
#define DOWN 0
#define UP 1void GPIO_config(void) {GPIO_InitTypeDef	GPIO_InitStructure;		//结构定义GPIO_InitStructure.Pin  = GPIO_Pin_3 | GPIO_Pin_6 | GPIO_Pin_7;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P0, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  =  GPIO_Pin_7;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P1, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  =  GPIO_Pin_4  | GPIO_Pin_5;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P3, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  =  GPIO_Pin_0  | GPIO_Pin_1;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P4, &GPIO_InitStructure);//初始化
}void UART_config(void) {// >>> 记得添加 NVIC.c, UART.c, UART_Isr.c <<<COMx_InitDefine		COMx_InitStructure;					//结构定义COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTxCOMx_InitStructure.UART_BRT_Use   = BRT_Timer1;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLECOMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLEUART_Configuration(UART1, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4NVIC_UART1_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3UART1_SW(UART1_SW_P30_P31);		// 引脚选择, UART1_SW_P30_P31,UART1_SW_P36_P37,UART1_SW_P16_P17,UART1_SW_P43_P44
}u8 get_col(u8 i){if(i==0) return COL1;if(i==1) return COL2;if(i==2) return COL3;if(i==3) return COL4;return COL1;
}// 根据遍历的索引下标来拉低对应行的电平状态
void pull_row(u8 i){ROW1 = i == 0 ? 0 : 1;ROW2 = i == 1 ? 0 : 1;ROW3 = i == 2 ? 0 : 1;ROW4 = i == 3 ? 0 : 1;
}u16 states = 0xFFFF;  //1111 1111 1111 1111void main(){int i , j;EA = 1 ;GPIO_config();UART_config();printf("start...\n");while(1){// 判定4行的状态//外层循环控制的是:行for(i  = 0 ; i < 4 ; i++){// 每遍历一次,就拉低这一行对应的电平状态,拉高其他行的电平状态pull_row(i);//里层循环控制的是: 列for(j = 0 ; j < 4  ; j++){/*第1行:0-0 :  字节的 第 0 位   0-1 :  字节的 第 1 位0-2 :  字节的 第 2 位0-3 :  字节的 第 3 位第2行:1-0 :  字节的 第 4 位1-1 :  字节的 第 5 位1-2 :  字节的 第 6 位1-3 :  字节的 第 7 位第3行:2-0 :  字节的 第 8 位2-1 :  字节的 第 9 位2-2 :  字节的 第 10 位2-3 :  字节的 第 11 位第4行:3-0 :  字节的 第 12 位3-1 :  字节的 第 13 位3-2 :  字节的 第 14 位3-3 :  字节的 第 15 位所以i行j列的键,对应的 位是: i * 4 + j我们要去操作对应的键和位。*/if(get_col(j) == UP && IS_KEY_DOWN(i, j)){printf("%d-%d::弹起\n" , i+1 , j+1);SET_KEY_UP(i, j);}else if(get_col(j) == DOWN && IS_KEY_UP(i,j) ){printf("%d-%d::按下\n" , i+1 , j+1);SET_KEY_DOWN(i,j);}}}delay_ms(10);}
}
获取按键状态(通过extern封装)
main.c
#include "GPIO.h"
#include "NVIC.h"
#include "Delay.h"
#include "UART.h"
#include "Switch.h"
#include "MatrixKey.h"void UART_config(void) {// >>> 记得添加 NVIC.c, UART.c, UART_Isr.c <<<COMx_InitDefine		COMx_InitStructure;					//结构定义COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTxCOMx_InitStructure.UART_BRT_Use   = BRT_Timer1;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLECOMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLEUART_Configuration(UART1, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4NVIC_UART1_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3UART1_SW(UART1_SW_P30_P31);		// 引脚选择, UART1_SW_P30_P31,UART1_SW_P36_P37,UART1_SW_P16_P17,UART1_SW_P43_P44
}void MK_keydown(u8 row , u8 col){printf("%d-%d  按键按下了..\n" , (int)row , (int)col);
}void MK_keyup(u8 row , u8 col){printf("%d-%d  按键弹起了..\n" , (int)row , (int)col);
}void main(){EA = 1 ;//初始化矩阵键盘MK_init();UART_config();printf("start...\n");while(1){//扫描键盘MK_scan();delay_ms(10);}
}
MatrixKey.h
#ifndef	__MATRIXKEY_H
#define	__MATRIXKEY_H#include "GPIO.h"// 声明: 宏、结构体
#define COL1 P03
#define COL2 P06
#define COL3 P07
#define COL4 P17#define ROW1 P34
#define ROW2 P35
#define ROW3 P40
#define ROW4 P41//判断按键的状态
#define IS_KEY_DOWN(row , col)  ((states & (1 << (row * 4 + col))) == 0)
#define IS_KEY_UP(row,col) ((states  & (1 << (row * 4 + col))) > 0)//设置按键的状态
#define SET_KEY_DOWN(row, col)   (states &= ~(1 << (row * 4 + col)))
#define SET_KEY_UP(row, col)  (states  |=  (1 << (row * 4 + col)))//按键的状态
#define DOWN 0
#define UP 1// 函数具体功能
void MK_init();//扫描按键的状态的函数
void MK_scan();//既然封装了按键的扫描功能,但是以后按键按下了,或者弹起了,用户有自己的想法
//它们需求千变万化,所以特地声明了两个extern 标记的函数,谁要是使用我们的这一套代码
//就需要在自己的代码里面实现|定义这两个函数,这样就可以捕捉到是按下了按键还是弹起了按键。
//就可以针对性的去处理了。
extern void MK_keydown(u8 row , u8 col);extern void MK_keyup(u8 row , u8 col);#endif
MatrixKey.c
#include "MatrixKey.h"u16 states = 0xFFFF;  //1111 1111 1111 1111void MK_init(){GPIO_InitTypeDef	GPIO_InitStructure;		//结构定义GPIO_InitStructure.Pin  = GPIO_Pin_3 | GPIO_Pin_6 | GPIO_Pin_7;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P0, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  =  GPIO_Pin_7;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P1, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  =  GPIO_Pin_4  | GPIO_Pin_5;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P3, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  =  GPIO_Pin_0  | GPIO_Pin_1;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P4, &GPIO_InitStructure);//初始化
}u8 get_col(u8 i){if(i==0) return COL1;if(i==1) return COL2;if(i==2) return COL3;if(i==3) return COL4;return COL1;
}// 根据遍历的索引下标来拉低对应行的电平状态
void pull_row(u8 i){ROW1 = i == 0 ? 0 : 1;ROW2 = i == 1 ? 0 : 1;ROW3 = i == 2 ? 0 : 1;ROW4 = i == 3 ? 0 : 1;
}void MK_scan(){u8 i , j;// 判定4行的状态//外层循环控制的是:行for(i  = 0 ; i < 4 ; i++){// 每遍历一次,就拉低这一行对应的电平状态,拉高其他行的电平状态pull_row(i);//里层循环控制的是: 列for(j = 0 ; j < 4  ; j++){if(get_col(j) == UP && IS_KEY_DOWN(i, j)){SET_KEY_UP(i, j);MK_keyup(i, j);}else if(get_col(j) == DOWN && IS_KEY_UP(i,j) ){SET_KEY_DOWN(i,j);MK_keydown(i ,j);}}}
}
获取按键状态(通过函数指针封装)
main.c
#include "Delay.h"
#include "NVIC.h"
#include "GPIO.h"
#include "UART.h"
#include "Switch.h"
#include "MKkey.h"void UART_config(void) {// >>> 记得添加 NVIC.c, UART.c, UART_Isr.c <<<COMx_InitDefine		COMx_InitStructure;					//结构定义COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTxCOMx_InitStructure.UART_BRT_Use   = BRT_Timer1;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLECOMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLEUART_Configuration(UART1, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4NVIC_UART1_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3UART1_SW(UART1_SW_P30_P31);		// 引脚选择, UART1_SW_P30_P31,UART1_SW_P36_P37,UART1_SW_P16_P17,UART1_SW_P43_P44
}void keydown(u8 row,u8 col){printf("%d-%d:按下\n",(int)row+1,(int)col+1);
}void keyup(u8 row,u8 col){printf("%d-%d:弹起\n",(int)row+1,(int)col+1);
}void main(){EA = 1;KEY_init();UART_config();while(1){MK_GET_key(keydown,keyup);delay_ms(10);}
}
MKkey.h
#ifndef	__MKkey_H
#define	__MKkey_H#include "GPIO.h"#define COL1 P03
#define COL2 P06
#define COL3 P07
#define COL4 P17#define ROW1 P34
#define ROW2 P35
#define ROW3 P40
#define ROW4 P41#define IS_KEY_DOWN(row,col) ((states & (1<<(row * 4 + col))) == 0)
#define IS_KEY_UP(row,col) ((states & (1<<(row * 4 + col))) > 0)
#define SET_KEY_DOWN(row,col) (states &= ~((1<<(row * 4 + col))))
#define SET_KEY_UP(row,col) (states |= (1<<(row * 4 + col)))
#define DOWN 0
#define UP 1void KEY_init();void MK_GET_key(void(*keydown)(u8 row,u8 col),void(*keyup)(u8 row,u8 col));#endif
MKkey.c
#include "MKkey.h"u16 states = 0xffff;void KEY_init(){GPIO_InitTypeDef	GPIO_InitStructure;		//结构定义GPIO_InitStructure.Pin  = GPIO_Pin_3 | GPIO_Pin_6 | GPIO_Pin_7;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P0, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  = GPIO_Pin_7;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P1, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  = GPIO_Pin_4 | GPIO_Pin_5;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P3, &GPIO_InitStructure);//初始化GPIO_InitStructure.Pin  = GPIO_Pin_0 | GPIO_Pin_1;		//指定要初始化的IO,GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PPGPIO_Inilize(GPIO_P4, &GPIO_InitStructure);//初始化
}u8 get_key(u8 i){if(i==0) return COL1;if(i==1) return COL2;if(i==2) return COL3;if(i==3) return COL4;return COL1;}void key_down(u8 i){ROW1 = i == 0 ? 0 : 1;ROW2 = i == 1 ? 0 : 1;ROW3 = i == 2 ? 0 : 1;ROW4 = i == 3 ? 0 : 1;
}void MK_GET_key(void(*keydown)(u8 row,u8 col),void(*keyup)(u8 row,u8 col)){int i,j;for(i=0;i<4;i++){key_down(i);for(j=0;j<4;j++){if(get_key(j) == UP && IS_KEY_DOWN(i,j)){SET_KEY_UP(i,j);if(keyup!=NULL){keyup(i,j);}}else if(get_key(j) == DOWN && IS_KEY_UP(i,j)){SET_KEY_DOWN(i,j);if(keydown!=NULL){keydown(i,j);}}}}
}

EEPROM

简介

        EEPROM是一种可擦写可编程只读存储器(Electrically Erasable Programmable Read-Only Memory)的缩写。它是一种非易失性存储器,可以在不需要外部电源的情况下保持存储数据。与ROM不同,EEPROM可以通过电子擦除和编程来修改存储的数据,因此它是一种可重写的存储器。

        EEPROM通常用于存储需要频繁修改的数据,例如系统配置信息、用户设置、校准数据等。由于EEPROM可以在系统运行时进行读写操作,因此它在许多应用中都具有很高的实用价值。

设置EEPROM

TC8H8K64U的EEPROM可以在烧录的时候指定大小, 如下图

代码

#include "Delay.h"
#include "NVIC.h"
#include "UART.h"
#include "Switch.h"
#include "EEPROM.h"
#include "string.h"void UART_config(void) {// >>> 记得添加 NVIC.c, UART.c, UART_Isr.c <<<COMx_InitDefine		COMx_InitStructure;					//结构定义COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTxCOMx_InitStructure.UART_BRT_Use   = BRT_Timer1;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLECOMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLEUART_Configuration(UART1, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4NVIC_UART1_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3UART1_SW(UART1_SW_P30_P31);		// 引脚选择, UART1_SW_P30_P31,UART1_SW_P36_P37,UART1_SW_P16_P17,UART1_SW_P43_P44
}u16 EE_address = 0x0000;
xdata	char  str2[100];void main(){char *  str = "helloworld";u16 len  =  strlen(str);EA = 1 ;UART_config();//=============================操作EEPROM==========================//1. 擦除EPPROM :: 擦除的起始地址EEPROM_SectorErase(EE_address);//2. 写数据参数一: 写入的起始地址 ,参数二: 写什么数据,参数三,写多少个长度EEPROM_write_n(EE_address,str,len);//3. 读数据参数一: 读取的起始地址 ,参数二: 读取到哪里,参数三,读多少个长度EEPROM_read_n(EE_address,str2,len);//因为使用的字符数组来接收数据,它的长度很长,我们需要去设置字符的截止符号str2[len] = '\0';printf("str2=%s\n" , str2);while(1){}
}

总结

        今天内容比较容易,但是小伙伴们也一定要多加练习,在验证eeprom时,可以通过以上代码将数据写入进去,然后进行断电重新上电,直接进行读的操作,就会发现我们之前写上的数据仍然可以读取出来,说明数据被我们写里面存储啦。下期再见!

这篇关于STC进阶开发(四)SPI协议、矩阵键盘、EEPROM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/574622

相关文章

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

Java 与 LibreOffice 集成开发指南(环境搭建及代码示例)

《Java与LibreOffice集成开发指南(环境搭建及代码示例)》本文介绍Java与LibreOffice的集成方法,涵盖环境配置、API调用、文档转换、UNO桥接及REST接口等技术,提供... 目录1. 引言2. 环境搭建2.1 安装 LibreOffice2.2 配置 Java 开发环境2.3 配

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD