嵌入式 线程同步的时候pthread_cond_t要和pthread_mutex_t搭配使用

2024-01-05 12:18

本文主要是介绍嵌入式 线程同步的时候pthread_cond_t要和pthread_mutex_t搭配使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、互斥锁和条件变量合作示例

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count = 0;

decrement_count () {
    pthread_mutex_lock (&count_lock);
    while(count==0)
        pthread_cond_wait( &count_nonzero, &count_lock);

    count=count -1;
    pthread_mutex_unlock (&count_lock);
}
 
increment_count(){
    pthread_mutex_lock(&count_lock);
 
    if(count==0)
        pthread_cond_signal(&count_nonzero);
 
    count=count+1;
    pthread_mutex_unlock(&count_lock);
}

decrement_count和increment_count在两个线程A和B中被调用。
正确的情况下,如果decrement_count首先运行,那么A会被阻塞到pthread_cond_wait。随后increment_count运行,它调用pthread_cond_signal唤醒等待条件锁count_nonzero的A线程,但是A线程并不会马上执行,因为它得不到互斥锁count_lock。当B线程执行pthread_mutex_unlock之后A线程才得以继续执行。
 
如果pthread_cond_signal前后没有使用互斥锁count_lock保护,可能的情况是这样。A阻塞到pthread_cond_wait,然后B执行到pthread_cond_signal时候,发生了线程切换,于是A被唤醒,并且发现count依然是0,所以继续阻塞到条件锁count_nonzero上。然后B继续执行,这时候尽管count=1,A永远不会被唤醒了。这样就发生了逻辑错误。
 
当然在这个上下文中,如果把count=count+1放在函数放在pthread_cond_signal之前变成
 
increment_count(){
     count=count+1;
 
    if(count==0)
        pthread_cond_signal(&count_nonzero);
}
 
这样没有问题。但是这种方法并不能保证所有情况下都适用。于是需要用互斥锁保护条件锁相关的变量。也就是说条件锁是用来线程通讯的,但是互斥锁是为了保护这种通讯不会产生逻辑错误,可以正常工作。

条件变量pthread_cond_t怎么用: 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/ 
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;/*初始化条件变量*/ 
void *thread1(void *); 
void *thread2(void *); 
int i=1; 
int main(void) 

pthread_t t_a; 
pthread_t t_b; 
pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/ 
pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/ 
pthread_join(t_a, NULL);/*等待进程t_a结束*/ 
pthread_join(t_b, NULL);/*等待进程t_b结束*/ 
pthread_mutex_destroy(&mutex); 
pthread_cond_destroy(&cond); 
exit(0); 

void *thread1(void *junk) 

for(i=1;i<=6;i++) 

pthread_mutex_lock(&mutex);/*锁住互斥量*/ 
printf("thread1: lock %d/n", __LINE__); 
if(i%3==0){ 
printf("thread1:signal 1 %d/n", __LINE__); 
pthread_cond_signal(&cond);/*条件改变,发送信号,通知t_b进程*/ 
printf("thread1:signal 2 %d/n", __LINE__); 
sleep(1); 

pthread_mutex_unlock(&mutex);/*解锁互斥量*/ 
printf("thread1: unlock %d/n/n", __LINE__); 
sleep(1); 


void *thread2(void *junk) 

while(i<6) 

pthread_mutex_lock(&mutex); 
printf("thread2: lock %d/n", __LINE__); 
if(i%3!=0){ 
printf("thread2: wait 1 %d/n", __LINE__); 
pthread_cond_wait(&cond,&mutex);/*解锁mutex,并等待cond改变*/ 
printf("thread2: wait 2 %d/n", __LINE__); 

pthread_mutex_unlock(&mutex); 
printf("thread2: unlock %d/n/n", __LINE__); 
sleep(1); 


编译: 
[X61@horizon threads]$ gcc thread_cond.c -lpthread -o tcd 
以下是程序运行结果: 
[X61@horizon threads]$ ./tcd 
thread1: lock 30 
thread1: unlock 40 

thread2: lock 52 
thread2: wait 1 55 
thread1: lock 30 
thread1: unlock 40 

thread1: lock 30 
thread1:signal 1 33 
thread1:signal 2 35 
thread1: unlock 40 

thread2: wait 2 57 
thread2: unlock 61 

thread1: lock 30 
thread1: unlock 40 

thread2: lock 52 
thread2: wait 1 55 
thread1: lock 30 
thread1: unlock 40 

thread1: lock 30 
thread1:signal 1 33 
thread1:signal 2 35 
thread1: unlock 40 

thread2: wait 2 57 
thread2: unlock 61 
这里的两个关键函数就在pthread_cond_wait和pthread_cond_signal函数。 
本例中: 

线程一先执行,获得mutex锁,打印,然后释放mutex锁,然后阻塞自己1秒。 

线程二此时和线程一应该是并发的执行 ,这里是一个要点,为什么说是线程此时是并发的执行,因为此时不做任何干涉的话,是没有办法确定是线程一先获得执行还是线程二先获得执行,到底那个线程先获得执行,取决于操作系统的调度,想刻意的让线程2先执行,可以让线程2一出来,先sleep一秒。 
这里并发执行的情况是,线程一先进入循环,然后获得锁,此时估计线程二执行,阻塞在 
pthread_mutex_lock(&mutex); 
这行语句中,直到线程1释放mutex锁 
pthread_mutex_unlock(&mutex);/*解锁互斥量*/ 
然后线程二得已执行,获取metux锁,满足if条件,到pthread_cond_wait (&cond,&mutex);/*等待*/ 
这里的线程二阻塞,不仅仅是等待cond变量发生改变,同时释放mutex锁 ,因为当时看书没有注意,所以这里卡了很久。 
mutex锁释放后,线程1终于获得了mutex锁,得已继续运行,当线程1的if(i%3==0)的条件满足后,通过pthread_cond_signal发送信号,告诉等待cond的变量的线程(这个情景中是线程二),cond条件变量已经发生了改变。 
不过此时线程二并没有立即得到运行 ,因为线程二还在等待mutex锁的释放,所以线程一继续往下走,直到线程一释放mutex锁,线程二才能停止等待,打印语句,然后往下走通过pthread_mutex_unlock(&mutex)释放mutex锁,进入下一个循环。 

这篇关于嵌入式 线程同步的时候pthread_cond_t要和pthread_mutex_t搭配使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572838

相关文章

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req