在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库

本文主要是介绍在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paddle infer官方目前没有发布基于cuda12的c++库,为此参考https://www.paddlepaddle.org.cn/inference/user_guides/source_compile.html实现cuda12的编译安装,不料博主才边缘好自己的paddle2.6,paddle官方已经发布了cuda12.0的paddle2.6框架。但按照官网教程进行编译是有很多bug需要解决的,故此分享一下经验,避免踩坑。例如在使用paddle infer库时发现某些类的接口设置不合理,可以通过修改源码后自行编译,修改接口权限。
在这里插入图片描述

1、编译前准备

1.1 下载源码

下载源码

git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
git checkout release/2.6

在这里插入图片描述

1.2 安装依赖项

pip install numpy protobuf wheel ninja

1.3 执行cmake命令

执行以下编译命令 ,Visual Studio 16 2019这个根据自己电脑环境进行修改,TENSORRT_ROOT按照自己配置设置,也可以删除该配置项
cmake .. -G "Visual Studio 16 2019" -A x64 -DWITH_GPU=ON -DWITH_TESTING=OFF -DON_INFER=ON -DCMAKE_BUILD_TYPE=Release -DPY_VERSION=3.8

如果本机安装了多个 CUDA,将使用最新安装的 CUDA 版本。若需要指定 CUDA 版本,则需要设置环境变量。先执行以下代码
set CUDA_TOOLKIT_ROOT_DIR=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2 set PATH=%CUDA_TOOLKIT_ROOT_DIR:/=\%\bin;%CUDA_TOOLKIT_ROOT_DIR:/=\%\libnvvp;%PATH%

如果本机安装了多个 Python,将自动使用最新安装的 Python 版本。若需要指定 Python 版本,则需要指定 Python 路径。则需要在cmake命令中添加以下命令
-DPYTHON_EXECUTABLE=C:\Python38\python.exe -DPYTHON_INCLUDE_DIR=C:\Python38\include -DPYTHON_LIBRARY=C:\Python38\libs\python38.lib -DWITH_UNITY_BUILD=ON
除了以上的cuda支持外,编译paddle还有一下支持项,tensorrt、onnxruntime等,具体见下图
在这里插入图片描述

2、编译中问题

2.1 python版本报错

若无以下报错,则忽略该章节

Paddle only support Python version>=3.8 now
在这里插入图片描述
如果确认自己python版本没有任何问题,参考博主的操作,将原来判断版本的代码改成以下形式
在这里插入图片描述
此时,应该会cmake成功,输出信息如下所示
在这里插入图片描述

2.2 vs2019编译

找到以下文件,双击打开
在这里插入图片描述
在vs中将配置项改成以下内容,并在ALL_BUILD处点击右键选生成,此时界面信息如下图所示
在这里插入图片描述

2.3 过程报错一

在这里插入图片描述
解决方案,将生成的common.dll拷贝出来,重新执行一遍编译
在这里插入图片描述

2.4 过程报错二

以下报错是同样是拷贝文件失误,但不清楚具体是怎么导致的
在这里插入图片描述
博主将Paddle/cmake/copyfile.py里的代码改为以下方式:

import glob
import os
import shutil
import sysdef main():src = sys.argv[1]dst = sys.argv[2]try:if os.path.isdir(src):  # copy directorypathList = os.path.split(src)dst = os.path.join(dst, pathList[-1])if not os.path.exists(dst):shutil.copytree(src, dst)print(f"first copy directory: {src} --->>> {dst}")else:shutil.rmtree(dst)shutil.copytree(src, dst)print(f"overwritten copy directory: {src} --->>> {dst}")else:  # copy file, wildcardif not os.path.exists(dst):os.makedirs(dst)srcFiles = glob.glob(src)for srcFile in srcFiles:print(f"copy file: {srcFile} --->>> {dst}")shutil.copy(srcFile, dst)except:print("拷贝失误:=====》",src,dst)raise EOFErrorif __name__ == "__main__":main()

察觉出是 拷贝失误:=====》 C:\Users\Administrator\Paddle\build\paddle\common\common.* C:\Users\Administrator\Paddle\build\paddle_inference_install_dir\paddle\lib
于是手动完成数据拷贝
在这里插入图片描述
并将Paddle/cmake/copyfile.py里的代码改为以下方式,跳过对common.*数据的拷贝。然后重新执行编译

import glob
import os
import shutil
import sysdef main():src = sys.argv[1]dst = sys.argv[2]try:if os.path.isdir(src):  # copy directorypathList = os.path.split(src)dst = os.path.join(dst, pathList[-1])if not os.path.exists(dst):shutil.copytree(src, dst)print(f"first copy directory: {src} --->>> {dst}")else:#shutil.rmtree(dst)#shutil.copytree(src, dst)print(f"overwritten copy directory: {src} --->>> {dst}")else:  # copy file, wildcardif not os.path.exists(dst):os.makedirs(dst)if "common.*" in src:returnsrcFiles = glob.glob(src)for srcFile in srcFiles:shutil.copy(srcFile, dst)print(f"copy file: {srcFile} --->>> {dst}")except:print("拷贝失误:=====》",src,dst)raise EOFErrorif __name__ == "__main__":main()

最终输出如下所示,可见编译成功
在这里插入图片描述

3、编译结果

3.1 python安装包

可以在python终端进入dist目录,然后执行pip install ./paddlepaddle_gpu-0.0.0-cp38-cp38-win_amd64.whl 安装自己编译的paddle
在这里插入图片描述

3.2 c++推理库

paddle/Include目录下包括了使用飞桨预测库需要的头文件,paddle/lib目录下包括了生成的静态库和动态库,third_party目录下包括了预测库依赖的其它库文件。
在这里插入图片描述
具体形式如官网一致

build/paddle_inference_install_dir
├── CMakeCache.txt
├── paddle
│   ├── include
│   │   ├── paddle_anakin_config.h
│   │   ├── paddle_analysis_config.h
│   │   ├── paddle_api.h
│   │   ├── paddle_inference_api.h
│   │   ├── paddle_mkldnn_quantizer_config.h
│   │   └── paddle_pass_builder.h
│   └── lib
│       ├── libpaddle_inference.a (Linux)
│       ├── libpaddle_inference.so (Linux)
│       └── libpaddle_inference.lib (Windows)
├── third_party
│   ├── boost
│   │   └── boost
│   ├── eigen3
│   │   ├── Eigen
│   │   └── unsupported
│   └── install
│       ├── gflags
│       ├── glog
│       ├── mkldnn
│       ├── mklml
│       ├── protobuf
│       ├── xxhash
│       └── zlib
└── version.txt

在使用过程中需要将dll文件的路径添加到系统环境变量中
在这里插入图片描述

这篇关于在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572720

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部