狗还是机器人?谁在屏幕后和你对话?新研究开发仿真面对面对话系统 | 一周AI最火论文

本文主要是介绍狗还是机器人?谁在屏幕后和你对话?新研究开发仿真面对面对话系统 | 一周AI最火论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据文摘专栏作品

作者:Christopher Dossman

编译:Jiaxu、Joey、云舟

呜啦啦啦啦啦啦啦大家好,拖更的AIScholar Weekly栏目又和大家见面啦!

AI ScholarWeekly是AI领域的学术专栏,致力于为你带来最新潮、最全面、最深度的AI学术概览,一网打尽每周AI学术的前沿资讯。

每周更新,做AI科研,每周从这一篇开始就够啦!

本周关键词:仿真、数据可视化、开源机器人平台


本周热门学术研究


基于深度神经网络的仿真面对面对话系统


近日,CloudMinds和北京航空航天大学的研究人员基于深度学习提出了一种新的仿真面对面对话系统。CloudMinds是一家在机器人和云服务领域的领军企业,致力于成为针对各种机器人模型需求的供应商。


该会话系统包括用于收听和说话的两个序列到序列模型以及基于虚拟代理合成器的生成性对抗网络(GAN)模型。


当虚拟代理与人通信时,语音音频和面部图像被输入到系统中。面部图像由面部解析模块处理,产生面部动作和姿势。然后将生成的信息传递到基于序列到序列的收听模型中。当虚拟代理在收听时,输出被馈送到合成器中以产生逼真的面部图像作为非语言反应。



语音识别模型将语音音频变换为文本,然后传递到会话模块中以生成响应语句,该响应语句被传递到文本到语音(TTS)模块以合成语音。响应语句被传递到序列到序列的说话模型,其输出也被输入到虚拟合成器中以产生逼真的面部图像,从而呼应语音内容。头像合成器则用于在整个对话期间收听和说话。


本文显著改进了传统的基于3D模型的成果。为了训练模型,研究人员收集了大约700个ESPN视频,其中包含来自YouTube的面对面对话场景。


与传统3D模型的生成结果相比,该模型所生成的面部图像更接近现实。毋庸置疑的是,在使得会话更加逼真自然的领域上,该系统还有很大的潜力可供挖掘,未来它还可用于实现个性化表情会话。


原文:

https://arxiv.org/abs/1908.07750


使用DISCo方法改进钙成像分析


本文中,德国海德堡大学跨学科科学计算中心(IWR)的研究人员介绍了DISCo方法,这是一种使用深度学习,实例分割和相关性研究的新方法,可用于钙成像分析中的细胞分割步骤。


 

DISCo将深度学习网络的优势与最先进的实例分割程序相结合,允许直接提取单元实例而无需任何复杂的后处理步骤。他们还以非常有效的方式利用钙成像视频的时间背景来计算像素之间的分段相关性。然后以摘要图像的形式将此时间信息与基于形状的信息相结合。


DISCo的最大优势在于能够结合相关性和图像特征,而不只依赖于其中一种方法。因此,DISCo可以通过在Neurofinder数据集上仅使用单个模型来使神经研究人员获得良好的整体性能。此外,当在几个数据集系列上训练单个网络时,研究人员能够超越在Neurofinder数据集上训练的所有其他方法。


原文:

https://arxiv.org/abs/1908.07957


用于科研教育的低成本开源机器人赛车平台


华盛顿大学保罗G.艾伦计算机科学与工程学院的研究人员最近介绍了MuSHR,即多代理的非完整赛车系统。MuSHR是一个低成本、开源的机器人赛车平台,致力于教育和研究,由MuSHR的个人机器人实验室开发,旨在促进机器人领域的公民化。作为一个低成本的平台,参与者可以通过说明,开源文档和动手教程参与其中。




赛车的硬件设计基于一系列现成的组件,这些组件可以从世界各地的线上和线下硬件商店中轻松地找到,而软件架构则是在个人机器人实验室中开发的。该平台为华盛顿大学的移动机器人课程开发了一套演示系统和许多宝贵的实践经验,是机器人平台开发的里程碑。


MuSHR的低成本开发模式和综合的文档记录是宝贵的机器人研究资源。该平台向学术研究实验室,机器人研究者及机器人爱好者等展示各种机器人研究项目提供了一个出色的测试平台。


MuSHR具有开源指令和教程带领用户完成硬件开发。文档托管在Github上,免费供一般公众下载使用。


代码:

https://github.com/prl-mushr

原文:

https://arxiv.org/abs/1908.08031


三维扫描与CAD对象的联合嵌入


近日,慕尼黑工业大学、斯坦福大学以及 Facebook 人工智能研究所共同提出了一种学习三维扫描和CAD之间的联合嵌入空间的技术。而在这两者中有很多联系紧密且十分相似的事物。这一学习方法基于一种全新的3D CNN 技术,通过学习联合嵌入空间中事物的相似性来实现嵌入。


  

为了学习一个扫描对象和CAD模型可以相互交织的共享空间,研究人员提出使用堆叠沙漏的方式将前景、背景与扫描对象分开,并将其转换为完整的类CAD表示,以此将它整合到共享嵌入空间中。这样操作得到的嵌入空间可以用于CAD模型检索。为了更好地完成这一任务,研究人员引入了一个全新数据集,其中包括了扫描CAD相似性注释。在这一数据集的帮助下,他们能够对CAD模型检索进行细粒度的评估,并对杂乱、嘈杂部分进行扫描。


这一新型学习方式比现有的CAD模型在实例检索上的准确率高出10% 以上。


因此,它在CAD模型检索方面的表现比原有模型更好。学习这样的联合扫描- CAD嵌入空间不仅为CAD模型检索提供了新的解决方案,也为这两个领域之间的知识映射提供了新的可能性。


当然,虽然这个技术在扫描与学习CAD对象空间方面非常有效,但它仍然有很多局限性——目前研究人员仅考虑了扫描和CAD对象领域中对象的几何形状;而这篇论文中未提及的颜色信息可能是联合嵌入或CAD模型检索的另一强大信号。


原文:

https://arxiv.org/abs/1908.06989


Google发布Turbo,可视化工具的里程碑式突破


Turbo 是由Google研究人员提出的一种着色工具,它既有Jet的优势功能,同时也解决了Jet的一些短板,例如细节错误、条带、和颜色混淆等。

             

在开发人员的精心调试下,Turbo的强大性能能够胜任各种可视化任务。在开发过程中,研究人员们制作了一个简单的交互界面,在其中他们能够使用7节立方条来调整RGB曲线,同时将样本结果与其他知名彩绘程序的结果进行比较。


Turbo可以作为顺序和发散的可视化工具,因此它很适合开发人员保存在自己的“工具箱”中。它用于解决均匀性不那么重要的数据可视化任务非常有效,尤其是在需要展现强烈对比的情况下。


Google的团队将这个工具用于实现视差贴图、误差贴图以及许多其他标量的可视化中。您可以在下方链接中找到在Python和C/C++ 中的使用这几技术的方法,以及多项式逼近的方法——用于可能查表查询不太方便的情况中。


Python: 

https://gist.github.com/mikhailov-work/ee72ba4191942acecc03fe6da94fc73f

C/C++: 

https://gist.github.com/mikhailov-work/6a308c20e494d9e0ccc29036b28faa7a

Polynomial approximation:  

https://gist.github.com/mikhailov-work/0d177465a8151eb6ede1768d51d476c7


原文:

https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html


其他爆款论文


使用GANS突破图像扩展:

https://arxiv.org/abs/1908.07007v1


AI着装?坐在家里就能看着自己穿大牌衣服走跑跳:

https://arxiv.org/abs/1908.06903


Google 人工智能团队通过循环神经网络传感器提高了说话人的分类性能:

https://ai.googleblog.com/2019/08/joint-speech-recognition-and-speaker.html


如何通过机器学习算法设计一个原创雕塑:

https://arxiv.org/pdf/1908.07587.pdf


使用基于学习的框架从2D鸟瞰图中估计事物的边界框架:

https://arxiv.org/abs/1908.07085


AI新闻


IBM和Linux合作推广公平且有效的人工智能工具:

https://www.zdnet.com/article/ibm-joins-linux-foundation-ai-to-promote-open-source-trusted-ai-workflows/


2019 企业级人工智能趋势:现状与未来:
https://www.forbes.com/sites/danielnewman/2019/08/21/4-growing-enterprise-ai-trends-where-are-we-now-and-where-are-we-going/#5dead43c6280


人工智能正在加速改变商业广告模式:
https://www.forbes.com/sites/forbesagencycouncil/2019/08/21/how-artificial-intelligence-is-transforming-digital-marketing/#47bae7f221e1


MIT的人工智能技术帮助现代数据中心实现高性能运转:
https://news.mit.edu/2019/decima-data-processing-0821


专栏作者介绍

Christopher Dossman是Wonder Technologies的首席数据科学家,在北京生活5年。他是深度学习系统部署方面的专家,在开发新的AI产品方面拥有丰富的经验。除了卓越的工程经验,他还教授了1000名学生了解深度学习基础。

LinkedIn:

https://www.linkedin.com/in/christopherdossman/


这篇关于狗还是机器人?谁在屏幕后和你对话?新研究开发仿真面对面对话系统 | 一周AI最火论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572243

相关文章

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加