节约内存:Instagram的Redis实践

2024-01-05 06:58

本文主要是介绍节约内存:Instagram的Redis实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Instagram可以说是网拍App的始祖级应用,也是当前最火热的拍照App之一,Instagram的照片数量已经达到3亿,而在Instagram里,我们需要知道每一张照片的作者是谁,下面就是Instagram团队如何使用Redis来解决这个问题并进行内存优化的。

首先,这个通过图片ID反查用户UID的应用有以下几点需求:

  • 查询速度要足够快
  • 数据要能全部放到内存里,最好是一台EC2的 high-memory 机型就能存储(17GB或者34GB的,68GB的太浪费了)
  • 要合适Instagram现有的架构(Instagram对Redis有一定的使用经验,比如这个应用)
  • 支持持久化,这样在服务器重启后不需要再预热

Instagram的开发者首先否定了数据库存储的方案,他们保持了KISS原则(Keep It Simple and Stupid),因为这个应用根本用不到数据库的update功能,事务功能和关联查询等等牛X功能,所以不必为这些用不到的功能去选择维护一个数据库。

于是他们选择了Redis,Redis是一个支持持久化的内存数据库,所有的数据都被存储在内存中(忘掉VM吧),而最简单的实现就是使用Redis的String结构来做一个key-value存储就行了。像这样:

SET media:1155315 939
GET media:1155315
> 939

其中1155315是图片ID,939是用户ID,我们将每一张图片ID为作key,用户uid作为value来存成key-value对。然后他们进行了测试,将数据按上面的方法存储,1,000,000数据会用掉70MB内存,300,000,000张照片就会用掉21GB的内存。对比预算的17GB还是超支了。

NoSQLFan:其实这里我们可以看到一个优化点,我们可以将key值前面相同的media去掉,只存数字,这样key的长度就减少了,减少key值对内存的开销【注:Redis的key值不会做字符串到数字的转换,所以这里节省的,仅仅是media:这6个字节的开销】。经过实验,内存占用会降到50MB,总的内存占用是15GB,是满足需求的,但是Instagram后面的改进任然有必要

于是Instagram的开发者向Redis的开发者之一Pieter Noordhuis询问优化方案,得到的回复是使用Hash结构。具体的做法就是将数据分段,每一段使用一个Hash结构存储,由于Hash结构会在单个Hash元素在不足一定数量时进行压缩存储,所以可以大量节约内存。这一点在上面的String结构里是不存在的。而这个一定数量是由配置文件中的hash-zipmap-max-entries参数来控制的。经过开发者们的实验,将hash-zipmap-max-entries设置为1000时,性能比较好,超过1000后HSET命令就会导致CPU消耗变得非常大。

于是他们改变了方案,将数据存成如下结构:

HSET "mediabucket:1155" "1155315" "939"
HGET "mediabucket:1155" "1155315"
> "939"

通过取7位的图片ID的前四位为Hash结构的key值,保证了每个Hash内部只包含3位的key,也就是1000个。

再做一次实验,结果是每1,000,000个key只消耗了16MB的内存。总内存使用也降到了5GB,满足了应用需求。

NoSQLFan:同样的,这里我们还是可以再进行优化,首先是将Hash结构的key值变成纯数字,这样key长度减少了12个字节,其次是将Hash结构中的subkey值变成三位数,这又减少了4个字节的开销,如下所示。经过实验,内存占用量会降到10MB,总内存占用为3GB

HSET "1155" "315" "939"
HGET "1155" "315"
> "939"

优化无止境,只要肯琢磨。希望你在使用存储产品时也能如此爱惜内存。

来源:instagram-engineering.tumblr.com

From: http://blog.nosqlfan.com/html/3379.html

这篇关于节约内存:Instagram的Redis实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572038

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

Java如何从Redis中批量读取数据

《Java如何从Redis中批量读取数据》:本文主要介绍Java如何从Redis中批量读取数据的情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一.背景概述二.分析与实现三.发现问题与屡次改进3.1.QPS过高而且波动很大3.2.程序中断,抛异常3.3.内存消