节约内存:Instagram的Redis实践

2024-01-05 06:58

本文主要是介绍节约内存:Instagram的Redis实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Instagram可以说是网拍App的始祖级应用,也是当前最火热的拍照App之一,Instagram的照片数量已经达到3亿,而在Instagram里,我们需要知道每一张照片的作者是谁,下面就是Instagram团队如何使用Redis来解决这个问题并进行内存优化的。

首先,这个通过图片ID反查用户UID的应用有以下几点需求:

  • 查询速度要足够快
  • 数据要能全部放到内存里,最好是一台EC2的 high-memory 机型就能存储(17GB或者34GB的,68GB的太浪费了)
  • 要合适Instagram现有的架构(Instagram对Redis有一定的使用经验,比如这个应用)
  • 支持持久化,这样在服务器重启后不需要再预热

Instagram的开发者首先否定了数据库存储的方案,他们保持了KISS原则(Keep It Simple and Stupid),因为这个应用根本用不到数据库的update功能,事务功能和关联查询等等牛X功能,所以不必为这些用不到的功能去选择维护一个数据库。

于是他们选择了Redis,Redis是一个支持持久化的内存数据库,所有的数据都被存储在内存中(忘掉VM吧),而最简单的实现就是使用Redis的String结构来做一个key-value存储就行了。像这样:

SET media:1155315 939
GET media:1155315
> 939

其中1155315是图片ID,939是用户ID,我们将每一张图片ID为作key,用户uid作为value来存成key-value对。然后他们进行了测试,将数据按上面的方法存储,1,000,000数据会用掉70MB内存,300,000,000张照片就会用掉21GB的内存。对比预算的17GB还是超支了。

NoSQLFan:其实这里我们可以看到一个优化点,我们可以将key值前面相同的media去掉,只存数字,这样key的长度就减少了,减少key值对内存的开销【注:Redis的key值不会做字符串到数字的转换,所以这里节省的,仅仅是media:这6个字节的开销】。经过实验,内存占用会降到50MB,总的内存占用是15GB,是满足需求的,但是Instagram后面的改进任然有必要

于是Instagram的开发者向Redis的开发者之一Pieter Noordhuis询问优化方案,得到的回复是使用Hash结构。具体的做法就是将数据分段,每一段使用一个Hash结构存储,由于Hash结构会在单个Hash元素在不足一定数量时进行压缩存储,所以可以大量节约内存。这一点在上面的String结构里是不存在的。而这个一定数量是由配置文件中的hash-zipmap-max-entries参数来控制的。经过开发者们的实验,将hash-zipmap-max-entries设置为1000时,性能比较好,超过1000后HSET命令就会导致CPU消耗变得非常大。

于是他们改变了方案,将数据存成如下结构:

HSET "mediabucket:1155" "1155315" "939"
HGET "mediabucket:1155" "1155315"
> "939"

通过取7位的图片ID的前四位为Hash结构的key值,保证了每个Hash内部只包含3位的key,也就是1000个。

再做一次实验,结果是每1,000,000个key只消耗了16MB的内存。总内存使用也降到了5GB,满足了应用需求。

NoSQLFan:同样的,这里我们还是可以再进行优化,首先是将Hash结构的key值变成纯数字,这样key长度减少了12个字节,其次是将Hash结构中的subkey值变成三位数,这又减少了4个字节的开销,如下所示。经过实验,内存占用量会降到10MB,总内存占用为3GB

HSET "1155" "315" "939"
HGET "1155" "315"
> "939"

优化无止境,只要肯琢磨。希望你在使用存储产品时也能如此爱惜内存。

来源:instagram-engineering.tumblr.com

From: http://blog.nosqlfan.com/html/3379.html

这篇关于节约内存:Instagram的Redis实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572038

相关文章

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三