节约内存:Instagram的Redis实践

2024-01-05 06:58

本文主要是介绍节约内存:Instagram的Redis实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Instagram可以说是网拍App的始祖级应用,也是当前最火热的拍照App之一,Instagram的照片数量已经达到3亿,而在Instagram里,我们需要知道每一张照片的作者是谁,下面就是Instagram团队如何使用Redis来解决这个问题并进行内存优化的。

首先,这个通过图片ID反查用户UID的应用有以下几点需求:

  • 查询速度要足够快
  • 数据要能全部放到内存里,最好是一台EC2的 high-memory 机型就能存储(17GB或者34GB的,68GB的太浪费了)
  • 要合适Instagram现有的架构(Instagram对Redis有一定的使用经验,比如这个应用)
  • 支持持久化,这样在服务器重启后不需要再预热

Instagram的开发者首先否定了数据库存储的方案,他们保持了KISS原则(Keep It Simple and Stupid),因为这个应用根本用不到数据库的update功能,事务功能和关联查询等等牛X功能,所以不必为这些用不到的功能去选择维护一个数据库。

于是他们选择了Redis,Redis是一个支持持久化的内存数据库,所有的数据都被存储在内存中(忘掉VM吧),而最简单的实现就是使用Redis的String结构来做一个key-value存储就行了。像这样:

SET media:1155315 939
GET media:1155315
> 939

其中1155315是图片ID,939是用户ID,我们将每一张图片ID为作key,用户uid作为value来存成key-value对。然后他们进行了测试,将数据按上面的方法存储,1,000,000数据会用掉70MB内存,300,000,000张照片就会用掉21GB的内存。对比预算的17GB还是超支了。

NoSQLFan:其实这里我们可以看到一个优化点,我们可以将key值前面相同的media去掉,只存数字,这样key的长度就减少了,减少key值对内存的开销【注:Redis的key值不会做字符串到数字的转换,所以这里节省的,仅仅是media:这6个字节的开销】。经过实验,内存占用会降到50MB,总的内存占用是15GB,是满足需求的,但是Instagram后面的改进任然有必要

于是Instagram的开发者向Redis的开发者之一Pieter Noordhuis询问优化方案,得到的回复是使用Hash结构。具体的做法就是将数据分段,每一段使用一个Hash结构存储,由于Hash结构会在单个Hash元素在不足一定数量时进行压缩存储,所以可以大量节约内存。这一点在上面的String结构里是不存在的。而这个一定数量是由配置文件中的hash-zipmap-max-entries参数来控制的。经过开发者们的实验,将hash-zipmap-max-entries设置为1000时,性能比较好,超过1000后HSET命令就会导致CPU消耗变得非常大。

于是他们改变了方案,将数据存成如下结构:

HSET "mediabucket:1155" "1155315" "939"
HGET "mediabucket:1155" "1155315"
> "939"

通过取7位的图片ID的前四位为Hash结构的key值,保证了每个Hash内部只包含3位的key,也就是1000个。

再做一次实验,结果是每1,000,000个key只消耗了16MB的内存。总内存使用也降到了5GB,满足了应用需求。

NoSQLFan:同样的,这里我们还是可以再进行优化,首先是将Hash结构的key值变成纯数字,这样key长度减少了12个字节,其次是将Hash结构中的subkey值变成三位数,这又减少了4个字节的开销,如下所示。经过实验,内存占用量会降到10MB,总内存占用为3GB

HSET "1155" "315" "939"
HGET "1155" "315"
> "939"

优化无止境,只要肯琢磨。希望你在使用存储产品时也能如此爱惜内存。

来源:instagram-engineering.tumblr.com

From: http://blog.nosqlfan.com/html/3379.html

这篇关于节约内存:Instagram的Redis实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572038

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方