难以置信!LSTM和GRU的解析从未如此清晰(动图+视频)

2024-01-05 02:48

本文主要是介绍难以置信!LSTM和GRU的解析从未如此清晰(动图+视频),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

翻译:https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

 

【导语】机器学习工程师 Michael Nguyen 在其博文中发布了关于 LSTM 和 GRU 的详细图解指南。博文中,他先介绍了 LSTM 和 GRU 的本质, 然后解释了让 LSTM 和 GRU 有良好表现的内部机制。 当然,如果你还想了解这两种网络背后发生了什么,那么这篇文章就是为你准备的。

 

短时记忆

 

RNN 会受到短时记忆的影响。如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步。 因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信息。

 

在反向传播期间,RNN 会面临梯度消失的问题。 梯度是用于更新神经网络的权重值,消失的梯度问题是当梯度随着时间的推移传播时梯度下降,如果梯度值变得非常小,就不会继续学习。

梯度更新规则

 

因此,在递归神经网络中,获得小梯度更新的层会停止学习—— 那些通常是较早的层。 由于这些层不学习,RNN 可以忘记它在较长序列中看到的内容,因此具有短时记忆。

 

 

作为解决方案的 LSTM 和 GRU

 

LSTM 和 GRU 是解决短时记忆问题的解决方案,它们具有称为“门”的内部机制,可以调节信息流。

 

这些“门”可以知道序列中哪些重要的数据是需要保留,而哪些是要删除的。 随后,它可以沿着长链序列传递相关信息以进行预测,几乎所有基于递归神经网络的技术成果都是通过这两个网络实现的。

 

LSTM 和 GRU 可以在语音识别、语音合成和文本生成中找到,你甚至可以用它们为视频生成字幕。对 LSTM 和 GRU 擅长处理长序列的原因,到这篇文章结束时你应该会有充分了解。 

 

下面我将通过直观解释和插图进行阐述,并避免尽可能多的数学运算。

 

 

本质

 

让我们从一个有趣的小实验开始吧。当你想在网上购买生活用品时,一般都会查看一下此前已购买该商品用户的评价。

 

 

当你浏览评论时,你的大脑下意识地只会记住重要的关键词,比如“amazing”和“awsome”这样的词汇,而不太会关心“this”、“give”、“all”、“should”等字样。如果朋友第二天问你用户评价都说了什么,那你可能不会一字不漏地记住它,而是会说出但大脑里记得的主要观点,比如“下次肯定还会来买”,那其他一些无关紧要的内容自然会从记忆中逐渐消失。

 

 

而这基本上就像是 LSTM 或 GRU 所做的那样,它们可以学习只保留相关信息来进行预测,并忘记不相关的数据。

 

 

RNN 述评

 

为了了解 LSTM 或 GRU 如何实现这一点,让我们回顾一下递归神经网络。 RNN 的工作原理如下;第一个词被转换成了机器可读的向量,然后 RNN 逐个处理向量序列。

 逐一处理矢量序列

 

处理时,RNN 将先前隐藏状态传递给序列的下一步。 而隐藏状态充当了神经网络记忆,它包含相关网络之前所见过的数据的信息。

      将隐藏状态传递给下一个时间步

 

 

让我们看看 RNN 的一个细胞,了解一下它如何计算隐藏状态。 首先,将输入和先前隐藏状态组合成向量, 该向量包含当前输入和先前输入的信息。 向量经过激活函数 tanh之后,输出的是新的隐藏状态或网络记忆。

       

RNN 细胞

 

激活函数 Tanh

 

激活函数 Tanh 用于帮助调节流经网络的值。 tanh 函数将数值始终限制在 -1 和 1 之间。

 

 

当向量流经神经网络时,由于有各种数学运算的缘故,它经历了许多变换。 因此想象让一个值继续乘以 3,你可以想到一些值是如何变成天文数字的,这让其他值看起来微不足道。

 

没有 tanh 函数的向量转换

 

tanh 函数确保值保持在 -1~1 之间,从而调节了神经网络的输出。 你可以看到上面的相同值是如何保持在 tanh 函数所允许的边界之间的。

 

有 tanh 函数的向量转换

 

这是一个 RNN。 它内部的操作很少,但在适当的情形下(如短序列)运作的很好。 RNN 使用的计算资源比它的演化变体 LSTM 和 GRU 要少得多。

 

 

LSTM

 

LSTM 的控制流程与 RNN 相似,它们都是在前向传播的过程中处理流经细胞的数据,不同之处在于 LSTM 中细胞的结构和运算有所变化。

 

LSTM 的细胞结构和运算

 

这一系列运算操作使得 LSTM具有能选择保存信息或遗忘信息的功能。咋一看这些运算操作时可能有点复杂,但没关系下面将带你一步步了解这些运算操作。

 

核心概念

 

LSTM 的核心概念在于细胞状态以及“门”结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的“记忆”。理论上讲,细胞状态能够将序列处理过程中的相关信息一直传递下去。

 

因此,即使是较早时间步长的信息也能携带到较后时间步长的细胞中来,这克服了短时记忆的影响。信息的添加和移除我们通过“门”结构来实现,“门”结构在训练过程中会去学习该保存或遗忘哪些信息。

 

Sigmoid

 

门结构中包含着 sigmoid 激活函数。Sigmoid 激活函数与 tanh 函数类似,不同之处在于 sigmoid 是把值压缩到 0~1 之间而不是 -1~1 之间。这样的设置有助于更新或忘记信息,因为任何数乘以 0 都得 0,这部分信息就会剔除掉。同样的,任何数乘以 1 都得到它本身,这部分信息就会完美地保存下来。这样网络就能了解哪些数据是需要遗忘,哪些数据是需要保存。

 

Sigmoid 将值压缩到 0~1 之间

 

接下来了解一下门结构的功能。LSTM 有三种类型的门结构:遗忘门、输入门和输出门。

 

遗忘门

 

遗忘门的功能是决定应丢弃或保留哪些信息。来自前一个隐藏状态的信息和当前输入的信息同时传递到 sigmoid 函数中去,输出值介于 0 和 1 之间,越接近 0 意味着越应该丢弃,越接近 1 意味着越应该保留。

 

遗忘门的运算过程

 

输入门

 

输入门用于更新细胞状态。首先将前一层隐藏状态的信息和当前输入的信息传递到 sigmoid 函数中去。将值调整到 0~1 之间来决定要更新哪些信息。0 表示不重要,1 表示重要。

 

其次还要将前一层隐藏状态的信息和当前输入的信息传递到 tanh 函数中去,创造一个新的侯选值向量。最后将 sigmoid 的输出值与 tanh 的输出值相乘,sigmoid 的输出值将决定 tanh 的输出值中哪些信息是重要且需要保留下来的。

输入门的运算过程

 

细胞状态

 

下一步,就是计算细胞状态。首先前一层的细胞状态与遗忘向量逐点相乘。如果它乘以接近 0 的值,意味着在新的细胞状态中,这些信息是需要丢弃掉的。然后再将该值与输入门的输出值逐点相加,将神经网络发现的新信息更新到细胞状态中去。至此,就得到了更新后的细胞状态。

 

细胞状态的计算

 

输出门

 

输出门用来确定下一个隐藏状态的值,隐藏状态包含了先前输入的信息。首先,我们将前一个隐藏状态和当前输入传递到 sigmoid 函数中,然后将新得到的细胞状态传递给 tanh 函数。

 

最后将 tanh 的输出与 sigmoid 的输出相乘,以确定隐藏状态应携带的信息。再将隐藏状态作为当前细胞的输出,把新的细胞状态和新的隐藏状态传递到下一个时间步长中去。

 

 输出门的运算过程

 

让我们再梳理一下。遗忘门确定前一个步长中哪些相关的信息需要被保留;输入门确定当前输入中哪些信息是重要的,需要被添加的;输出门确定下一个隐藏状态应该是什么。

 

代码示例

 

对于那些懒得看文字的人来说,代码也许更好理解,下面给出一个用 python 写的示例。

 

def LSTMCELL(prev_ct,prev_ht,input):combine = prev_ct + input ft = forget_layer(combine)candidate = candidate_layer(combine)it = input_layer(combine)Ct = prev_ct *ft + candidate *itot = output_layer(combine)ht = ot*tanh(ct)return ht,ctct = [0,0,0]
ht = [0,0,0]for input in inputs:ct,ht = LSTMCELL(ct,ht,input)

python 写的伪代码

 

1.首先,我们将先前的隐藏状态和当前的输入连接起来,这里将它称为 combine;

2.其次将 combine 丢到遗忘层中,用于删除不相关的数据;

3.再用 combine 创建一个候选层,候选层中包含着可能要添加到细胞状态中的值;

4.combine 同样要丢到输入层中,该层决定了候选层中哪些数据需要添加到新的细胞状态中;

5.接下来细胞状态再根据遗忘层、候选层、输入层以及先前细胞状态的向量来计算;

6.再计算当前细胞的输出;

7.最后将输出与新的细胞状态逐点相乘以得到新的隐藏状态。

 

是的,LSTM 网络的控制流程就是几个张量和一个 for 循环。你还可以使用隐藏状态进行预测。结合这些机制,LSTM 能够在序列处理中确定哪些信息需要记忆,哪些信息需要遗忘。

 

GRU

 

知道了 LSTM 的工作原理之后,来了解一下 GRU。GRU 是新一代的循环神经网络,与 LSTM 非常相似。与 LSTM 相比,GRU 去除掉了细胞状态,使用隐藏状态来进行信息的传递。它只包含两个门:更新门和重置门。

 

GRU 的细胞结构和门结构

更新门

 

更新门的作用类似于 LSTM 中的遗忘门和输入门。它决定了要忘记哪些信息以及哪些新信息需要被添加。

 

重置门

 

重置门用于决定遗忘先前信息的程度。

 

这就是 GRU。GRU 的张量运算较少,因此它比 LSTM 的训练更快一下。很难去判定这两者到底谁更好,研究人员通常会两者都试一下,然后选择最合适的。

 

 

结语

 

总而言之,RNN 适用于处理序列数据用于预测,但却受到短时记忆的制约。LSTM 和 GRU 采用门结构来克服短时记忆的影响。门结构可以调节流经序列链的信息流。LSTM 和 GRU 被广泛地应用到语音识别、语音合成和自然语言处理等。

 

原文链接:https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

这篇关于难以置信!LSTM和GRU的解析从未如此清晰(动图+视频)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571419

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?