损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系

本文主要是介绍损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。

在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy之前,先来回顾一下信息量、熵、交叉熵等基本概念。

---------------------

信息论

交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

一、信息量

首先是信息量。假设我们听到了两件事,分别如下:

事件A:巴西队进入了2018世界杯决赛圈。

事件B:中国队进入了2018世界杯决赛圈。

仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

二、什么是熵

对于某个事件,有n种可能性,每一种可能性都有一个概率p(xi)

这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

注:文中的对数均为自然对数

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:

其中n代表所有的n种可能性,所以上面的问题结果就是

二、 相对熵(KL散度)

相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]

KL散度的计算公式:

 

三、什么是交叉熵

交叉熵

对式3.1变形可以得到:

 

其中p代表label或者叫groundtruth,q代表预测值

在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即

由于KL散度中的前一部分恰巧就是p的熵,p代表label或者叫groundtruth,故−H(p(x))不变,故在优化过程中,只需要关注交叉熵就可以了,所以一般在机器学习中直接用用交叉熵做loss,评估模型。

交叉熵

 

四、softmax_cross_entropy

以tensorflow中函数softmax_cross_entropy_with_logits为例,在二分类或者类别相互排斥多分类问题,计算 logits 和 labels 之间的 softmax 交叉熵

数据必须经过 One-Hot Encoding 编码

tf.one_hot

用 mnist 数据举例,如果是目标值是3,那么 label 就是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0。

该函数把一个维度上的 labels 作为一个整体判断,结果给出整个维度的损失值

这个函数传入的 logits 是 unscaled 的,既不做 sigmoid 也不做 softmax ,因为函数实现会在内部更高效得使用 softmax 。

softmax_cross_entropy_with_logits计算过程

1、对输入进行softmax

 

softmax公式

举个例子:假设你的输入S=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。

2、计算交叉熵

 

交叉熵公式

L是损失,Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此label——y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:

 

来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。

补充:sparse_softmax_cross_entropy_with_logits

sparse_softmax_cross_entropy_with_logits 是 softmax_cross_entropy_with_logits 的易用版本,除了输入参数不同,作用和算法实现都是一样的。

区别是:softmax_cross_entropy_with_logits 要求传入的 labels 是经过 one_hot encoding 的数据,而 sparse_softmax_cross_entropy_with_logits 不需要。

 

五、binary_cross_entropy

binary_cross_entropy是二分类的交叉熵,实际是多分类softmax_cross_entropy的一种特殊情况,当多分类中,类别只有两类时,即0或者1,即为二分类,二分类也是一个逻辑回归问题,也可以套用逻辑回归的损失函数。

1、利用softmax_cross_entropy_with_logits来计算二分类的交叉熵

来举个例子,假设一个2分类问题,假如一个batch包含两个样本,那么标签要制成二维,形如

y=[ [1, 0],[0, 1] ]

模型预测输出也为二维,形如

p=[ [0.8,0.2],[0.4,0.6] ]  #(softmax的输出)

那么对应的损失

L=( -log(0.8) - log(0.6) ) / 2

实际在计算中若采用softmax_cross_entropy_with_logits函数,不要事先做softmax处理。

 

2、套用逻辑回归代价损失函数来计算二分类的交叉熵

逻辑回归的损失函数如下:

来举个例子,假设一个2分类问题,假如一个batch包含两个样本,那么标签要制成一维,形如

y=[0,1 ]

模型预测输出也为一维,形如

p=[ 0.2,0.6 ]  #sigmoid的输出,这里一定要预先用sigmod处理,将预测结果限定在0~1之间,

那么对应的损失

L=( - 0*log(0.2) - (1 - 0)*log(1- 0.2) - log(0.6) - (1 -1)*log(1 - 0.6) ) / 2 = ( -log(0.8) - log(0.6) ) / 2

 

 

六、sigmoid_cross_entropy

以tensorflow中函数sigmoid_cross_entropy_with_logits为例说明

sigmoid_cross_entropy_with_logits函数,测量每个类别独立且不相互排斥的离散分类任务中的概率。(可以执行多标签分类,其中图片可以同时包含大象和狗。)

import tensorflow as tf_logits = [[0.5, 0.7, 0.3], [0.8, 0.2, 0.9]]_one_labels = tf.ones_like(_logits)# [[1 1 1]   #  [1 1 1]]   _zero_labels = tf.zeros_like(_logits)# [[0 0 0]   #  [0 0 0]]   with tf.Session() as sess:loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=_logits, labels=_one_labels)print(sess.run(loss))# [[0.47407699  0.40318602  0.5543552]   #  [0.37110069  0.59813887  0.34115386]]   loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=_logits, labels=_zero_labels)print(sess.run(loss))# [[0.97407699  1.10318601  0.85435522]   #  [1.17110074  0.79813886  1.24115384]]

 

看看sigmoid_cross_entropy_with_logits函数定义

def sigmoid_cross_entropy_with_logits(_sentinel=None,  labels=None, logits=None,  name=None):

#为了描述简洁,规定 x = logits,z = labels,那么 Logistic 损失值为:   

   z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))= (1 - z) * x + log(1 + exp(-x))= x - x * z + log(1 + exp(-x))

该函数与 softmax_cross_entropy_with_logits的区别在于:softmax_cross_entropy_with_logits中的labels 中每一维只能包含一个 1,sigmoid_cross_entropy_with_logits中的labels 中每一维可以包含多个 1。

softmax_cross_entropy_with_logits函数把一个维度上的 labels 作为一个整体判断,结果给出整个维度的损失值,而 sigmoid_cross_entropy_with_logits 是每一个元素都有一个损失值,都是一个二分类(binary_cross_entropy)问题。

 

参考:https://www.cnblogs.com/guqiangjs/p/8202899.html

 

这篇关于损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571395

相关文章

Before和BeforeClass的区别及说明

《Before和BeforeClass的区别及说明》:本文主要介绍Before和BeforeClass的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Before和BeforeClass的区别一个简单的例子当运行这个测试类时总结Before和Befor

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使