va_list是一个宏,由va_start和va_end界定,一时难说清,详细见《Windows32程序设计》Unicode部分

本文主要是介绍va_list是一个宏,由va_start和va_end界定,一时难说清,详细见《Windows32程序设计》Unicode部分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

va_list是一个宏,由va_start和va_end界定,一时难说清,详细见《Windows32程序设计》Unicode部分

va_list structure
Used to hold information needed by va_arg and va_end macros. Called function declares variable of type va_list that can be passed as argument to another function.
---STDARG.H

#ifndef _VA_LIST_DEFINED

#ifdef _M_ALPHA
typedef struct {
char *a0; /* pointer to first homed integer argument */
int offset; /* byte offset of next parameter */
} va_list;
#else
typedef char *va_list;
#endif

#define _VA_LIST_DEFINED
#endif


#if defined(_M_IX86)

/*
* define a macro to compute the size of a type, variable or expression,
* rounded up to the nearest multiple of sizeof(int). This number is its
* size as function argument (Intel architecture). Note that the macro
* depends on sizeof(int) being a power of 2!
*/
#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )

#define va_dcl va_list va_alist;
#define va_start(ap) ap = (va_list)&va_alist
#define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )
#define va_end(ap) ap = (va_list)0


#elif defined(_M_MRX000) /* _MIPS_ */


#define va_dcl int va_alist;
#define va_start(list) list = (char *) &va_alist
#define va_end(list)
#define va_arg(list, mode) ((mode *)(list =/
(char *) ((((int)list + (__builtin_alignof(mode)<=4?3:7)) &/
(__builtin_alignof(mode)<=4?-4:-8))+sizeof(mode))))[-1]
/* +++++++++++++++++++++++++++++++++++++++++++
Because of parameter passing conventions in C:
use mode=int for char, and short types
use mode=double for float types
use a pointer for array types
+++++++++++++++++++++++++++++++++++++++++++ */


#elif defined(_M_ALPHA)

/*
* The Alpha compiler supports two builtin functions that are used to
* implement stdarg/varargs. The __builtin_va_start function is used
* by va_start to initialize the data structure that locates the next
* argument. The __builtin_isfloat function is used by va_arg to pick
* which part of the home area a given register argument is stored in.
* The home area is where up to six integer and/or six floating point
* register arguments are stored down (so they can also be referenced
* by a pointer like any arguments passed on the stack).
*/
extern void * __builtin_va_start(va_list, ...);

#define va_dcl long va_alist;
#define va_start(list) __builtin_va_start(list, va_alist, 0)
#define va_end(list)
#define va_arg(list, mode) /
( *( ((list).offset += ((int)sizeof(mode) + 7) & -8) , /
(mode *)((list).a0 + (list).offset - /
((__builtin_isfloat(mode) && (list).offset <= (6 * 8)) ? /
(6 * 8) + 8 : ((int)sizeof(mode) + 7) & -8) /
) /
) /
)


#elif defined(_M_PPC)

/*
* define a macro to compute the size of a type, variable or expression,
* rounded up to the nearest multiple of sizeof(int). This number is its
* size as function argument (PPC architecture). Note that the macro
* depends on sizeof(int) being a power of 2!
*/
/* this is for LITTLE-ENDIAN PowerPC */

/* bytes that a type occupies in the argument list */
#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )
/* return 'ap' adjusted for type 't' in arglist */
#define _ALIGNIT(ap,t) /
((((int)(ap))+(sizeof(t)<8?3:7)) & (sizeof(t)<8?~3:~7))

#define va_dcl va_list va_alist;
#define va_start(ap) ap = (va_list)&va_alist
#define va_arg(ap,t) ( *(t *)((ap = (char *) (_ALIGNIT(ap, t) + _INTSIZEOF(t))) - _INTSIZEOF(t)) )
#define va_end(ap) ap = (va_list)0

#else

/* A guess at the proper definitions for other platforms */

#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )

#define va_dcl va_list va_alist;
#define va_start(ap) ap = (va_list)&va_alist
#define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )
#define va_end(ap) ap = (va_list)0


#endif


#ifdef __cplusplus
}
#endif

#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */

#endif /* _INC_VARARGS */
stdarg
在C/C++函数中使用可变参数
作者转自:http://foggy-elves.blog.sohu.com/
  下面介绍在C/C++里面使用的可变参数函数。
  先说明可变参数是什么,先回顾一下C++里面的函数重载,如果重复给出如下声明:
  int func();
  int func(int);
  int func(float);
  int func(int, int);
  ...
  这样在调用相同的函数名 func 的时候,编译器会自动识别入参列表的格式,从而调用相对应的函数体。
  但这样的方法毕竟有限,试想一下我们假如想定义一个函数,我们在调用之前(在运行期之前)根本不知道我到底要调用几个参数,并且不知道这些参数是个什么类型,例如我们想定义一个函数:
  int max(int n, ...);
  用来返回一串随意长度输入参数的最大值,例如调用
  max(3, 10, 20, 30)的时候,可以返回(n=3)个数 10,20,30 的最大值30。
  并且还可以接受任意个参数的输入,例如:
  max(6, 20, 40, 10, 50, 30, 40)也应该是被接受的,返回最大值50。
  这怎么达到呢?
  其实这样的例子我们肯定见过,最典型的就是 printf 函数,可以看 printf 函数的原形:
  int printf(char*, ...);
  它接受一个格式字符串,并且后面跟随任意指定的参数,根据实际需要而确定入参的个数。
  实际上它的实现要依赖于一个标准 C 库 <stdarg.h>,stdandard argument(标准参数) 的意思。下面先稍为介绍一下 <stdarg.h>,或者在 C++ 中的 <cstdarg> 的功效:
  这实际上是一组初始化和调用可变参数的宏,下面先介绍一下可变参数表的调用形式以及原理:
  首先是参数的内存存放格式:参数存放在内存的堆栈段中,在执行函数的时候,从最后一个开始入栈。因此栈底高地址,栈顶低地址,举个例子如下:
  void func(int x, float y, char z);
  那么,调用函数的时候,实参 char z 先进栈,然后是 float y,最后是 int x,因此在内存中变量的存放次序是 x->y->z,因此,从理论上说,我们只要探测到任意一个变量的地址,并且知道其他变量的类型,通过指针移位运算,则总可以顺藤摸瓜找到其他的输入变量。
  然后是可变入参表格式,省略的参数用 ... 代替,但必须注意:
1. 只能有一个 ... 并且它必须是最后一个参数;
2. 不要只用一个 ... 作为所有的参数,因为从后面可以知道,这样你无法确定入参表的地址。
  举个例子,声明函数如下:
  void func(int x, int y, ...);
  然后调用:func(3, 5, 'c', 2.1f, 6);
  于是在调用参数的时候,编译器则不会检查实际输入的是什么参数,只管把所有参数按照上面描述的方法,变成实参堆放在内存中,在本例中,内存中依次存放 x=3, y=5, 'c', 2.1f, 6
  但是有一个需要注意的地方,这些东西只是紧挨着堆放在内存中,于是想要正确调用这些参数,必须知道他们确切的类型,并且我们也关心这个参数表实际的长度,然而不幸的是,这些我们无从得知。因此,这个解决办法决不是高明的,从某种程度上说,这甚至是一个严重的漏洞。因此,C++ 很不提倡去使用它。
  不过缺点归缺点,万不得已的时候我们还是得用,但是我们对里面输入变量的时候,应该对入参的类型有一个清醒的认识,否则这样的操作是很危险的。
  下面是 <stdarg.h> 对上面这一个思路的实现,里面重要的几个宏定义如下:
  typedef char* va_list;
  void va_start ( va_list ap, prev_param ); /* ANSI version */
  type va_arg ( va_list ap, type );
  void va_end ( va_list ap );
  其中,va_list 是一个字符指针,可以理解为指向当前参数的一个指针,取参必须通过这个指针进行。
<Step 1> 在调用参数表之前,应该定义一个 va_list 类型的变量,以供后用(下面假设这个 va_list 类型变量被定义为ap);
<Step 2> 然后应该对 ap 进行初始化,让它指向可变参数表里面的第一个参数,这是通过 va_start 来实现的,第一个参数是 ap 本身,第二个参数是在变参表前面紧挨着的一个变量;
<Step 3> 然后是获取参数,调用 va_arg,它的第一个参数是 ap,第二个参数是要获取的参数的指定类型,然后返回这个指定类型的值,并且把 ap 的位置指向变参表的下一个变量位置;
<Step 4> 获取所有的参数之后,我们有必要将这个 ap 指针关掉,以免发生危险,方法是调用 va_end,他是输入的参数 ap 置为 NULL,应该养成获取完参数表之后关闭指针的习惯。
  例如开始的例子 int max(int n, ...); 其函数内部应该如此实现:
int max(int n, ...) { // 定参 n 表示后面变参数量,定界用,输入时切勿搞错
va_list ap; // 定义一个 va_list 指针来访问参数表
va_start(ap, n); // 初始化 ap,让它指向第一个变参
int maximum = -0x7FFFFFFF; // 这是一个最小的整数
int temp;
for(int i = 0; i < n; i++) {
temp = va_arg(ap, int); // 获取一个 int 型参数,并且 ap 指向下一个参数
if(maximum < temp) maximum = temp;
}
va_end(ap); // 善后工作,关闭 ap
return max;
}
// 在主函数中测试 max 函数的行为(C++ 格式)
int main() {
cout << max(3, 10, 20, 30) << endl;
cout << max(6, 20, 40, 10, 50, 30, 40) << endl;
}
  基本用法阐述至此,可以看到,这个方法存在两处极严重的漏洞:其一,输入参数的类型随意性,使得参数很容易以一个不正确的类型获取一个值(譬如输入一个float,却以int型去获取他),这样做会出现莫名其妙的运行结果;其二,变参表的大小并不能在运行时获取,这样就存在一个访问越界的可能性,导致后果严重的 RUNTIME ERROR。
  另外,<stdarg.h> 的内部实现形式在这处不再加说明,如果有需要可以参考下面的两个连接(感谢他们的作者)。
  http://www.cndw.com/tech/program/2006051065821.asp
  http://blog.csdn.net/wzwind/archive/2007/06/26/1666518.aspx
  作为建议,在 C++ 环境中尽量不要使用这种方法,如有需要,尽量先考虑使用类或者重载来代替,这样可以很好地弥补这种方法的漏洞。
全文完感谢读者,ELF原创,转载请注明出处

这篇关于va_list是一个宏,由va_start和va_end界定,一时难说清,详细见《Windows32程序设计》Unicode部分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571123

相关文章

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

MySQL 临时表创建与使用详细说明

《MySQL临时表创建与使用详细说明》MySQL临时表是存储在内存或磁盘的临时数据表,会话结束时自动销毁,适合存储中间计算结果或临时数据集,其名称以#开头(如#TempTable),本文给大家介绍M... 目录mysql 临时表详细说明1.定义2.核心特性3.创建与使用4.典型应用场景5.生命周期管理6.注