Flink Watermark和时间语义

2024-01-04 08:04
文章标签 时间 flink 语义 watermark

本文主要是介绍Flink Watermark和时间语义,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink 中的时间语义

[点击并拖拽以移动] ​

时间语义: EventTime:事件创建时间;Ingestion Time:数据进入Flink的时间;Processing Time:执行操作算子的本地系统时间,与机器无关。不同的时间语义有不同的应用场合,我们往往更关系事件时间Event Time。数据生成的时候就会自动注入时间戳,Event Time可以从日志数据的时间戳timestamp)中提取。

设置 Event Time

我们可以直接在代码中,对执行环境调用setStreamTimeCharacteristic方法,设置流的时间特性。具体的时间,还需要从数据中提取时间戳timestamp

val env = StreamExecutionEnvironment.getExecutionEnvironment
//从调用时刻开始给 env 创建的每一个 stream 追加时间特性
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

乱序数据的影响

[点击并拖拽以移动] ​

FlinkEvent Time模式处理数据流时,它会根据数据里的时间戳来处理基于时间的算子。由于网络、分布式等原因,会导致乱序数据的产生。如上图所示,理想情况与实际情况会存在差异,乱序数据会让窗口计算不准确。解决方案是让窗口等几分钟。

水位线 Watermark

怎么避免乱序数据带来计算不正确?
遇到一个时间戳到达了窗口关闭时间,不应该立刻触发窗口计算,而是等待一段时间,等迟到的数据来了再关闭窗口。Watermark是一种衡量Event Time进展的机制,可以设置延迟触发。Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window来实现。数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经达到了,因此,window的执行也是由Watermark触发的。Watermark用来让程序自己延迟和结果正确性。

Watermark 的特点: Watermark是一条特殊的数据记录,必须单调递增,以确保任务的事件时间时钟在向前推进,而不是在后退。Watermark与数据的时间戳有关。
[点击并拖拽以移动] ​

watermark 的传递、引入和设定

watermark的传递: 一个Task输入可以并行多个,如下有4个并行度,输出也可能存在多个并行,如下有3个。每个任务Task内部都有一个事件时钟,且每个分区也维护了对应的WM,如下的Partition WM。当事件流流进Partition时会判断新事件流的WM是否大于当前的Partition WM,当大于时就更新Partition的时间戳WM为新流入的WM(取最大值),如下1->2象限Partition WM的变化。同时,如下Task也维护了一个全局的WM表示事件时钟,该值取分区中最小的WM作为输出的时间戳,如下第二象限的输出选择最小的WM=3向下传递。当第二个(横线)分区Partition WM流进来WM=7的事件流时,就会出现第三象限的情景,但是最小的WM还是=3,因此不更新Task全局的WM。当第三个分区Partition WM流进来WM=6的事件流时,就会出现第四象限的情景,此时分区Partition WM的最小值=4,因此Task全局WM=4
[点击并拖拽以移动] ​

watermark的引入: Event Time的使用一定要指定数据源中的时间戳。对于排好序的数据,只需要指定时间戳就够了,不需要延迟触发。

import org.apache.flink.streaming.api.windowing.time.Time
//同时分配时间戳和水位线
dataStream.assignTimestampsAndWatermarks(
//无序数据       Time.milliseconds(1000)=延迟时间
new BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.milliseconds(1000)) {//提取事件戳 = timestamp * 1000是因为出入的毫秒override def extractTimestamp(t: SensorReading): Long = {t.timestamp * 1000}
})

【1】对于排好序的数据,不需要延迟触发,可以只指定事件戳就行了

dataStream.assignTimestampsAndWatermarks(_.timestamp * 1000)

【2】Flink暴露了TimestampAssigner接口供我们实现,使我们可以自定义如何从事件数据中抽取时间戳和生成 watermarkMyAssigner可以有两种类型,都继承自TimestampAssigner

dataStream.assignTimestampsAndWatermarks(new MyAssigner())

TimestampAssigner:定义了抽取时间戳,以及生成watermark的方法,有两种类型:
【1】AssignerWithPeriodicWatermarks 系统会周期性的将Watermark插入到流中。默认周期是200毫秒(如果是processingTimeWatermark = 0 ),可以使用ExecutionConfig.setAutoWatermarkInterval()方法进行设置。升序和前面乱序的处理BoundedOutOfOrderness,都是基于周期性watermark的。举例:如下产生watermark的逻辑:每隔5秒,Flink调用AssignerWithPeriodicWatermarksgetCurrentWatermark()方法。如果方法返回一个时间戳大于之前水位的时间戳,新的water会被插入到流中。这个检查保证了水位线是单调递增的。如果方法返回的时间戳小于之前水位的时间戳,则不会产生新的watermark

//方案一:
//EventTime是以数据自带的时间戳字段为准,应用程序需要指定如何从record中抽取时间戳字段
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
//每隔 5秒产生一个 watermark
env.getConfig.setAutoWatermarkInterval(5000);​
//方案二
//自定义一个周期性的时间戳
class PeriodicAssigner extends AssignerWithPeriodicWatermarks[SensorReading]{val bound: Long = 60 * 1000 //延时为 1 分钟var maxTs: Long = Long.MinValue //观察到的最大时间戳//生成水位线override def getCurrentWatermark: Watermark = {new Watermark(maxTs - bound)}//抽取时间戳的方法override def extractTimestamp(t: SensorReading, l: Long): Long = {maxTs = maxTs.max(t.timestamp)t.timestamp}
}

【2】AssignerWithPunctuatedWatermarks 没有时间周期规律,可打断的生成watermark

class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks[SensorReading]{val bound: Long = 60 * 1000//获取水位线,根据数据触发override def checkAndGetNextWatermark(t: SensorReading, l: Long): Watermark = {if(t.id == "sensor_1"){new Watermark(l - bound)}else{null}}//抽取时间戳的方法override def extractTimestamp(t: SensorReading, l: Long): Long = {t.timestamp}
}

watermark 的设定:
【1】在Flink中,watermark由应用程序开发人员生成,这通常需要对相应的领域有一定的了解。
【2】如果watermark设置的延迟太久,收到结果的速度可能就会很慢,解决办法是在水位线到达之前输出一个近似结果。
【3】而如果watermark到达得太早,则可能收到错误结果,不过Flink处理迟到数据的机制可以解决这个问题。

这篇关于Flink Watermark和时间语义的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/568667

相关文章

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库