diffusers 源码待理解之处

2024-01-04 03:04
文章标签 源码 理解 diffusers

本文主要是介绍diffusers 源码待理解之处,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、训练DreamBooth时,相关代码的细节小计

在这里插入图片描述
**

class_labels = timesteps 时,模型的前向传播怎么走?待深入去看

**

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

利用class_prompt去生成数据,而不是instance_prompt

在这里插入图片描述

class DreamBoothDataset(Dataset):"""A dataset to prepare the instance and class images with the prompts for fine-tuning the model.It pre-processes the images and the tokenizes prompts."""def __init__(self,instance_data_root,instance_prompt,tokenizer,class_data_root=None,class_prompt=None,class_num=None,size=512,center_crop=False,encoder_hidden_states=None,class_prompt_encoder_hidden_states=None,tokenizer_max_length=None,):self.size = sizeself.center_crop = center_cropself.tokenizer = tokenizerself.encoder_hidden_states = encoder_hidden_statesself.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_statesself.tokenizer_max_length = tokenizer_max_lengthself.instance_data_root = Path(instance_data_root)if not self.instance_data_root.exists():raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")self.instance_images_path = list(Path(instance_data_root).iterdir())self.num_instance_images = len(self.instance_images_path)self.instance_prompt = instance_promptself._length = self.num_instance_imagesif class_data_root is not None:self.class_data_root = Path(class_data_root)self.class_data_root.mkdir(parents=True, exist_ok=True)self.class_images_path = list(self.class_data_root.iterdir())if class_num is not None:self.num_class_images = min(len(self.class_images_path), class_num)else:self.num_class_images = len(self.class_images_path)self._length = max(self.num_class_images, self.num_instance_images)self.class_prompt = class_promptelse:self.class_data_root = Noneself.image_transforms = transforms.Compose([transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),])def __len__(self):return self._lengthdef __getitem__(self, index):example = {}instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])instance_image = exif_transpose(instance_image)if not instance_image.mode == "RGB":instance_image = instance_image.convert("RGB")example["instance_images"] = self.image_transforms(instance_image)if self.encoder_hidden_states is not None:example["instance_prompt_ids"] = self.encoder_hidden_stateselse:text_inputs = tokenize_prompt(self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length)example["instance_prompt_ids"] = text_inputs.input_idsexample["instance_attention_mask"] = text_inputs.attention_maskif self.class_data_root:class_image = Image.open(self.class_images_path[index % self.num_class_images])class_image = exif_transpose(class_image)if not class_image.mode == "RGB":class_image = class_image.convert("RGB")example["class_images"] = self.image_transforms(class_image)if self.class_prompt_encoder_hidden_states is not None:example["class_prompt_ids"] = self.class_prompt_encoder_hidden_stateselse:class_text_inputs = tokenize_prompt(self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length)example["class_prompt_ids"] = class_text_inputs.input_idsexample["class_attention_mask"] = class_text_inputs.attention_maskreturn example
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):if tokenizer_max_length is not None:max_length = tokenizer_max_lengthelse:max_length = tokenizer.model_max_lengthtext_inputs = tokenizer(prompt,truncation=True,padding="max_length",max_length=max_length,return_tensors="pt",)return text_inputs
def collate_fn(examples, with_prior_preservation=False):has_attention_mask = "instance_attention_mask" in examples[0]input_ids = [example["instance_prompt_ids"] for example in examples]pixel_values = [example["instance_images"] for example in examples]if has_attention_mask:attention_mask = [example["instance_attention_mask"] for example in examples]# Concat class and instance examples for prior preservation.# We do this to avoid doing two forward passes.if with_prior_preservation:input_ids += [example["class_prompt_ids"] for example in examples]pixel_values += [example["class_images"] for example in examples]if has_attention_mask:attention_mask += [example["class_attention_mask"] for example in examples]pixel_values = torch.stack(pixel_values)pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()input_ids = torch.cat(input_ids, dim=0)batch = {"input_ids": input_ids,"pixel_values": pixel_values,}if has_attention_mask:attention_mask = torch.cat(attention_mask, dim=0)batch["attention_mask"] = attention_maskreturn batch

Dataset和Dataloader的构成
在这里插入图片描述
为了避免模型过拟合或者是说语言漂移的情况,需要用模型去用一个普通的prompt先生成样本。

fine-tune text-encoder,但是对显存要求更高
在这里插入图片描述

二、训练text to image,相关代码的细节小计

**

1、Dataloader的构建如下,但是为啥没有attention_mask呢?训练DreamBooth时有
2、训练或者微调模型时需要图文数据对,如果没有文本数据,可以用BLIP去生成图像描述的文本,但是文本描述不一定可靠
**

 # Get the datasets: you can either provide your own training and evaluation files (see below)# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).# In distributed training, the load_dataset function guarantees that only one local process can concurrently# download the dataset.if args.dataset_name is not None:# Downloading and loading a dataset from the hub.dataset = load_dataset(args.dataset_name,args.dataset_config_name,cache_dir=args.cache_dir,data_dir=args.train_data_dir,)else:data_files = {}if args.train_data_dir is not None:data_files["train"] = os.path.join(args.train_data_dir, "**")dataset = load_dataset("imagefolder",data_files=data_files,cache_dir=args.cache_dir,)# See more about loading custom images at# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder# Preprocessing the datasets.# We need to tokenize inputs and targets.column_names = dataset["train"].column_names# 6. Get the column names for input/target.dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)if args.image_column is None:image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]else:image_column = args.image_columnif image_column not in column_names:raise ValueError(f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}")if args.caption_column is None:caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]else:caption_column = args.caption_columnif caption_column not in column_names:raise ValueError(f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}")# Preprocessing the datasets.# We need to tokenize input captions and transform the images.def tokenize_captions(examples, is_train=True):captions = []for caption in examples[caption_column]:if isinstance(caption, str):captions.append(caption)elif isinstance(caption, (list, np.ndarray)):# take a random caption if there are multiplecaptions.append(random.choice(caption) if is_train else caption[0])else:raise ValueError(f"Caption column `{caption_column}` should contain either strings or lists of strings.")inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt")return inputs.input_ids# Preprocessing the datasets.train_transforms = transforms.Compose([transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),])def preprocess_train(examples):images = [image.convert("RGB") for image in examples[image_column]]examples["pixel_values"] = [train_transforms(image) for image in images]examples["input_ids"] = tokenize_captions(examples)# images text pixel_values input_ids 4种keyreturn exampleswith accelerator.main_process_first():if args.max_train_samples is not None:dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))# Set the training transformstrain_dataset = dataset["train"].with_transform(preprocess_train)def collate_fn(examples):pixel_values = torch.stack([example["pixel_values"] for example in examples])pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()input_ids = torch.stack([example["input_ids"] for example in examples])return {"pixel_values": pixel_values, "input_ids": input_ids}# DataLoaders creation:train_dataloader = torch.utils.data.DataLoader(train_dataset,shuffle=True,collate_fn=collate_fn,batch_size=args.train_batch_size,num_workers=args.dataloader_num_workers,)

三、训ControlNet

Dataloader的搭建的代码如下:


1、新增conditioning_pixel_values图像数据,用于做可控的生成
2、输入中依旧没有attention-mask,待思考


def make_train_dataset(args, tokenizer, accelerator):# Get the datasets: you can either provide your own training and evaluation files (see below)# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).# In distributed training, the load_dataset function guarantees that only one local process can concurrently# download the dataset.if args.dataset_name is not None:# Downloading and loading a dataset from the hub.dataset = load_dataset(args.dataset_name,args.dataset_config_name,cache_dir=args.cache_dir,)else:if args.train_data_dir is not None:dataset = load_dataset(args.train_data_dir,cache_dir=args.cache_dir,)# See more about loading custom images at# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script# Preprocessing the datasets.# We need to tokenize inputs and targets.column_names = dataset["train"].column_names# 6. Get the column names for input/target.if args.image_column is None:image_column = column_names[0]logger.info(f"image column defaulting to {image_column}")else:image_column = args.image_columnif image_column not in column_names:raise ValueError(f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}")if args.caption_column is None:caption_column = column_names[1]logger.info(f"caption column defaulting to {caption_column}")else:caption_column = args.caption_columnif caption_column not in column_names:raise ValueError(f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}")if args.conditioning_image_column is None:conditioning_image_column = column_names[2]logger.info(f"conditioning image column defaulting to {conditioning_image_column}")else:conditioning_image_column = args.conditioning_image_columnif conditioning_image_column not in column_names:raise ValueError(f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}")def tokenize_captions(examples, is_train=True):captions = []for caption in examples[caption_column]:if random.random() < args.proportion_empty_prompts:captions.append("")elif isinstance(caption, str):captions.append(caption)elif isinstance(caption, (list, np.ndarray)):# take a random caption if there are multiplecaptions.append(random.choice(caption) if is_train else caption[0])else:raise ValueError(f"Caption column `{caption_column}` should contain either strings or lists of strings.")inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt")return inputs.input_idsimage_transforms = transforms.Compose([transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),transforms.CenterCrop(args.resolution),transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),])conditioning_image_transforms = transforms.Compose([transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),transforms.CenterCrop(args.resolution),transforms.ToTensor(),])def preprocess_train(examples):images = [image.convert("RGB") for image in examples[image_column]]images = [image_transforms(image) for image in images]conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]examples["pixel_values"] = imagesexamples["conditioning_pixel_values"] = conditioning_imagesexamples["input_ids"] = tokenize_captions(examples)return exampleswith accelerator.main_process_first():if args.max_train_samples is not None:dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))# Set the training transformstrain_dataset = dataset["train"].with_transform(preprocess_train)return train_datasetdef collate_fn(examples):pixel_values = torch.stack([example["pixel_values"] for example in examples])pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()input_ids = torch.stack([example["input_ids"] for example in examples])return {"pixel_values": pixel_values,"conditioning_pixel_values": conditioning_pixel_values,"input_ids": input_ids,}

这篇关于diffusers 源码待理解之处的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567969

相关文章

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最