详解卡尔曼滤波(Kalman Filter)

2024-01-03 22:20

本文主要是介绍详解卡尔曼滤波(Kalman Filter),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 从维纳滤波到卡尔曼滤波

黑盒(Black Box)思想最早由维纳(Wiener)在1939年提出,即假定我们对从数据到估计中间的映射过程一无所知,仅仅用线性估计(我们知道在高斯背景下,线性估计能达到克拉美劳下界,是最优估计)来掩盖我们的无知。

但是,到了二十年以后的1960年卡尔曼的年代,我们对于红框内的事(prior knowledge),很有可能是知道的,并且知道得很详细,很清楚。再这样的情况下,我们还不能有效地利用这一部分先验知识来帮助我们把估计做的更好就没有任何道理了。卡尔曼就是从红框入手,将这部分先验信息表达出来。至于怎么表达,就用到了状态空间表达(State Space Representation)

2. 状态空间表达(State Space Representation) 

我们可以写出如下一组方程:

\begin{cases}Z_n=g(Z_{n-1},v_n) & \mbox{State \ Equation}\quad (\mbox{Non-observable}) \\ X_n=h(Z_n,w_n)& \mbox{Observation\ Equation} \end{cases}

  • 状态方程(State Equation):是决定研究对象行为的关键量Z_n随时间的变化情况。Z_n我们是不能直接观测到的(因为采样的时候根本采不到这些状态,状态是隐含在观测量背后的);
  • 观测方程(Observation Equation):是状态Z_n通过某种形式、窗口、途径,让我们看到关于它的某种表现,而这种表现反映在观测量X_n当中。X_n是我们能直接观测到的。

由此可以发现,从维纳到卡尔曼有两点本质区别:

  1. 状态空间表达是我们注入先验知识的重要窗口,自此黑箱变成了白箱(White Box)因为数据\{X_n\}和估计量\{Z_n\}之间的关联关系已经完全展现在我们的面前了。
  2. Z_n时变的(Time varied),这就使得问题从平稳(Stationary)的变为非平稳的(Non-Stationary)的

值得一提的是:状态空间表达还有别的称呼,比如HMM(Hidden Markov Model)隐马尔科夫模型

3. 界定滤波问题

首先把状态空间表达进一步细化

\begin{cases} Z_n=G_nZ_{n-1}+v_n\\ X_n=H_nZ_n+w_n \end{cases}

\quad E(v_n)=E(w_n)=0,Cov(v_n)=R_n,Cov(w_n)=S_n ,

\{v_n\},\{w_n\} \mbox{ are Independent both and between}

 在此线性基础上我们来界定卡尔曼滤波的滤波问题

这里解释一下图里的逻辑脉络

  • 我们想用(X_1,...,X_n)估计Z_n
  • 虽然我们知道,条件期望是均方意义下的最优估计,但是通常在非高斯背景下我们很难求出条件期望;
  • 于是我们转而去求一个最优线性估计本质也就是把Z_n投影到由(X_1,...,X_n)张成的线性子空间里;
  • z_{n|n}中两个n的含义:第二个n表示用x_1,...,x_n的数据,第一个n表示要估计的状态是z_n。做的是线性估计,也就是上面说的投影
  • 卡尔曼滤波为了实现z_{n|n}\leftarrow z_{n-1|n-1},采用了两步走策略:第一步预测(Prediction);第二步矫正(Correction)。所以该策略也被称为预测-矫正(Prediction-Correction)策略

4. 推导细节

上面这里头核心的一步就是正交化,因为xn 和 x(1:n-1)  当然不正交,因为如果正交的话,就是高斯白噪声了。除非设备坏了,不然采出来的数据几乎不可能是个白噪声。

可以看到,方差不断地减小,这个过程是自适应完成的,非常精巧。

 5. 卡尔曼滤波总结

大名鼎鼎的卡尔曼滤波可以总结如下:

6. 理论应用

卡尔曼滤波怎么用呢?只需要给定初值\Sigma_{0|0}=I,(其实初值取什么不太重要别是0就行),和参数取值G_n,H_n,就可以随着数据的到来不断递推下去,获得越来越精准的结果,因为数据当中的信息是会不断地吸收进你的滤波器当中,这个其实也就是机器学习。

 追踪模型(Target Tracking)[Z_n,Z_n^{'},Z_n^{''}]

状态方程:

假设物体做匀加速直线运动:

\left[\begin{matrix} Z_n\\ Z_n^{'}\\ Z_n^{''} \end{matrix}\right] =\left(\begin{matrix} 1&\Delta t&\frac{1}{2}(\Delta t)^2\\ 0&1&\Delta t\\ 0&0&1 \end{matrix}\right) \left[\begin{matrix} Z_{n-1}\\ Z_{n-1}^{'}\\ Z_{n-1}^{''} \end{matrix}\right] +v_n

观测方程:

X_n=[1,0,0]\left[\begin{matrix} Z_n\\ Z_n^{'}\\ Z_n^{''} \end{matrix}\right]+w_n

 7. 卡尔曼滤波的优缺点(Pros and Cons)

我们平常形容某一门信号处理技术或者别的什么技术成熟了,是什么意思?

要知道成熟绝不等于热门热门的意思是:现在研究的人特别的多,文章特别多,对于这个方法的各种各样的扩充改进更新等等层出不穷,这个叫热门,但这个时候一定是不成熟的,原因很简单,是因为大家还没有看到这个方法的缺点。当大家知道的不仅仅是它能干什么,还有它不能干什么,那么这个方法就成熟了。卡尔曼滤波的缺点主要体现在以下三个方面:

1. 模型失配(Model Mismatch)

卡尔曼滤波说到底,虽然后面的推导看起来那么复杂,但其实就干了正交化这一件事而已。

另一方面,卡尔曼滤波极度依赖状态空间表达。在上述的追踪模型中,如果物体做的不是匀加速直线运动,是由模型失配导致Z_{n|n}中的误差项(X_n-H_nZ_{n|n-1})增大,而卡尔曼滤波却依旧坚持认为这个误差项是由于噪声造成的,并且不断增大卡尔曼增益,导致错上加错,最后乱套。

对付模型失配,有一个技术叫做IMM(交互式多模型Interacting Multiple Models),其实就是准备了很多个模型,总有一款适合你。模型之间有交互,是为了确认你究竟处于哪个模型当中。

2. 非线性(Non-Linear)

卡尔曼滤波线性性。但是现实情况大多是非线性的:

\begin{cases} Z_n=g(Z_{n-1},v_n)\\ X_n=h(Z_n,w_n) \end{cases}

比如,导航信号在穿过大气层的时候,是会有很严重的电离层的散射和畸变。(因为导航星很高,要飞两万公里以上过大气层,没到3万6的同步轨道,也不是几百公里侦查星)具有很强的非线性。那么,在非线性的情况下如何使用卡尔曼滤波?

一个很简单的办法就是线性化:EKF(扩展的卡尔曼滤波 Extended Kalman Filtering)

\begin{cases} Z_n=J_g^{(1)}Z_{n-1}+J_g^{(2)}v_n)\\ X_n=J_h^{(1)}Z_n+J_h^{(2)}w_n) \end{cases}

线性化只能局部做,所以模型要隔一段时间变一下,很正常。

3. 分布本身的推演(Distribution Propagation)

我们知道高斯能够完全由均值和方差确定,而卡尔曼滤波推演的只有均值和协方差阵,是因为我们假设噪声是高斯分布。要是噪声的情况非高斯,我们面临每一时刻,状态的分布情况都不一样,所以我能不能设计一种方法,使得这个状态的分布本身(不是一阶矩、二阶矩)能够随时间演化。这个问题,人们也解决了,靠的是粒子滤波技术(Particle Filtering)

这篇关于详解卡尔曼滤波(Kalman Filter)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567227

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原