pytorch训练报OSError: [WinError 1455] 页面文件太小,无法完成操作

本文主要是介绍pytorch训练报OSError: [WinError 1455] 页面文件太小,无法完成操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在windows下用pytorch训练的时候,比如用yolov5(yolov8等等也一样,只要是涉及到多进程,如dataloader的num_workers设的比较大),就有可能会遇到“OSError: [WinError 1455] 页面文件太小,无法完成操作”的错误。

 上图就是用yolov5训练报的错,训练命令为:

python train.py --data data/worker_data/dataset.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 200 --cache 

这里只指定了batch-size为16,workers没设,用的默认值就是8,实际num_workers取的是逻辑cpu核数(我的是16)、batch-size、workers三者的最小值,那就是取8啦。不过训练集、验证集的dataloader都会用到多进程。

 如果把batch-size改小,或者是把workers改小,那就有可能不报这个错啦,但是这明显不是解决问题的好办法,因为太小的batch-size或者workers都会降低你的训练速度。

一。问题原因

完整的来龙去脉可以看这个issue:[WinError 1455] The paging file is too small for this operation to complete. Error loading "C:\ProgramData\Anaconda3\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll" or one of its dependencies · Issue #1643 · ultralytics/yolov3 · GitHub

简述一下,就是pytorch里面有一些cuda相关的dll文件非常大,并且只要你导入了pytorch相关的包,就会去加载这些文件,而且在开启多进程的时候,每个进程都会去加载这些文件,实际上可能并没有用到,所以在windows下用的是虚拟内存。但如果你的虚拟内存不够大的话,那就会报页面文件太小的错了。下图就是我报错的时候截的图,我的内存是32G,虚拟内存设的是20G,全占满了。

 而在linux下就不会有这个问题,这也是很多人可能根本就没遇到这个问题的原因,因为他们都是在linux服务器上训练的。在Linux服务器上,如果是申请实际上用不到的内存,那就是表面上申请一下,什么内存都没有分配,自然不存在够不够的问题啦。

二。解决办法

1.调大虚拟内存

很明显,一个简单粗暴的办法就是,调大虚拟内存呗,到于调多大,看你实际的需要啦,反正我上面的情况基本上要分配80G到100G的虚拟内存才够。设置虚拟内存的方法可以参照其它的帖子,我就不赘述了,不过提几点:

(1)C盘空间不够没关系,虚拟内存可以分配到其它分区,而且还能配置到多个分区上

(2)最好用固态硬盘啦,机械硬盘会慢一些

2.升级pytorch版本

办法1其实也不是个好办法啦,硬盘上莫名其妙地就少了100G,有点可惜,而且如果每次它都是实打实地给你把硬盘上的内容写一遍,还是蛮伤硬盘的,尤其是固态硬盘。。。

先直接给出一个最佳方案,正如上面那个issue里所说,这个问题可能跟pytorch有关,也可能跟英伟达有关,反正你们那个dll太大啦,或者别让我每次都得加载这些dll也行。我们可以尝试一下安装更新版本的pytorch,看看这个问题解决了没有!

之前报错的环境是在conda里面,pytorch用的是1.10.1+cu113

现在来尝试一下1.13.1+cu117(cuda自然也要更新一下啦,没有尝试最新的pytorch2.0是因为yolov5貌似还不支持pytorch2.0)

 还是执行上面同样的命令,这次不报错了,虚拟内存用的还是20G,可以看到虽然仍然用了一些虚拟内存,但是跟之前需要的80G甚至100G来说,已经小很多了!

 3.使用fixNvPe.py

但是如果由于某些原因,你不能升级pytorch版本,只能用某个版本的pytorch,又不想用那么大的虚拟内存,那就可以参考上面那个issue里的解决方案

https://github.com/ultralytics/yolov3/issues/1643

1.先把fixNvPe.py下下来,比如我就放在D:\ai\pytorch\fixNvPe.py

2.pip install pefile

3.执行fixNvPe.py

cd D:\ai\pytorch\

python fixNvPe.py --input C:\Users\kv183_pro\miniconda3\envs\torch1.0\Lib\site-packages\torch\lib\*.dll

这个dll的路径就是你pytorch里面的lib目录啦,其实都不用你自己去找,仔细看上面那个报错的图,就是红框里这个路径

好,执行完了

 下面再试一下,果然可以!而且内存占用比pytorch1.13还要少,牛逼!

 这个脚本改动的dll文件都给你备份了一份,脚本作者还是很贴心的~~

 脚本的内容并不长,为了防止有人访问不了,我直接给你贴在下面了,文件名fixNvPe.py

# Simple script to disable ASLR and make .nv_fatb sections read-only
# Requires: pefile  ( python -m pip install pefile )
# Usage:  fixNvPe.py --input path/to/*.dllimport argparse
import pefile
import glob
import os
import shutildef main(args):failures = []for file in glob.glob( args.input, recursive=args.recursive ):print(f"\n---\nChecking {file}...")pe = pefile.PE(file, fast_load=True)nvbSect = [ section for section in pe.sections if section.Name.decode().startswith(".nv_fatb")]if len(nvbSect) == 1:sect = nvbSect[0]size = sect.Misc_VirtualSizeaslr = pe.OPTIONAL_HEADER.IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASEwritable = 0 != ( sect.Characteristics & pefile.SECTION_CHARACTERISTICS['IMAGE_SCN_MEM_WRITE'] )print(f"Found NV FatBin! Size: {size/1024/1024:0.2f}MB  ASLR: {aslr}  Writable: {writable}")if (writable or aslr) and size > 0:print("- Modifying DLL")if args.backup:bakFile = f"{file}_bak"print(f"- Backing up [{file}] -> [{bakFile}]")if os.path.exists( bakFile ):print( f"- Warning: Backup file already exists ({bakFile}), not modifying file! Delete the 'bak' to allow modification")failures.append( file )continuetry:shutil.copy2( file, bakFile)except Exception as e:print( f"- Failed to create backup! [{str(e)}], not modifying file!")failures.append( file )continue# Disable ASLR for DLL, and disable writing for sectionpe.OPTIONAL_HEADER.DllCharacteristics &= ~pefile.DLL_CHARACTERISTICS['IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE']sect.Characteristics = sect.Characteristics & ~pefile.SECTION_CHARACTERISTICS['IMAGE_SCN_MEM_WRITE']try:newFile = f"{file}_mod"print( f"- Writing modified DLL to [{newFile}]")pe.write( newFile )pe.close()print( f"- Moving modified DLL to [{file}]")os.remove( file )shutil.move( newFile, file )except Exception as e:print( f"- Failed to write modified DLL! [{str(e)}]")failures.append( file )continueprint("\n\nDone!")if len(failures) > 0:print("***WARNING**** These files needed modification but failed: ")for failure in failures:print( f" - {failure}")def parseArgs():parser = argparse.ArgumentParser( description="Disable ASLR and make .nv_fatb sections read-only", formatter_class=argparse.ArgumentDefaultsHelpFormatter )parser.add_argument('--input', help="Glob to parse", default="*.dll")parser.add_argument('--backup', help="Backup modified files", default=True, required=False)parser.add_argument('--recursive', '-r', default=False, action='store_true', help="Recurse into subdirectories")return parser.parse_args()###############################
# program entry point
#
if __name__ == "__main__":args = parseArgs()main( args )

这篇关于pytorch训练报OSError: [WinError 1455] 页面文件太小,无法完成操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566689

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Ubuntu 24.04启用root图形登录的操作流程

《Ubuntu24.04启用root图形登录的操作流程》Ubuntu默认禁用root账户的图形与SSH登录,这是为了安全,但在某些场景你可能需要直接用root登录GNOME桌面,本文以Ubuntu2... 目录一、前言二、准备工作三、设置 root 密码四、启用图形界面 root 登录1. 修改 GDM 配

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA