python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅

本文主要是介绍python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
Python语言 Flask框架 Echarts可视化 旅游数据 HTML

旅游大数据分析可视化大屏(游客+商家+舆情)

旅游大数据分析可视化系统是一个基于Python Flask框架开发的系统,用于分析和可视化旅游领域的大数据。该系统主要包括游客分析、商家分析和舆情分析三个模块。

2、项目界面

(1)旅游大数据大屏

在这里插入图片描述

(3)旅游板块分析大屏----游客分析

在这里插入图片描述

(2)旅游板块分析大屏----商家分析

在这里插入图片描述

(4)旅游板块分析大屏----旅游舆情分析

在这里插入图片描述

(5)功能模块选择

在这里插入图片描述

3、项目说明

旅游大数据分析可视化系统是一个基于Python Flask框架开发的系统,用于分析和可视化旅游领域的大数据。该系统主要包括游客分析、商家分析和舆情分析三个模块。

  1. 游客分析模块:该模块主要对游客的行为进行分析,包括游客的年龄、性别、地域分布等信息。通过对游客数据的分析,可以帮助旅游机构了解自己的客户群体,并根据分析结果制定相应的营销策略。

  2. 商家分析模块:该模块主要对旅游商家的经营情况进行分析,包括商家的销售额、客流量等指标。通过对商家数据的分析,可以帮助商家了解自己的经营情况,并根据分析结果优化自己的经营策略。

  3. 舆情分析模块:该模块主要对旅游领域的舆情进行分析,包括用户在社交媒体上对旅游景点、旅游产品的评价等。通过对舆情数据的分析,可以帮助旅游机构了解用户对自己的评价,并及时采取相应的措施进行改进。

该系统通过将分析结果可视化展示在大屏上,使用户能够直观地了解旅游领域的大数据情况,从而更好地进行决策和规划。同时,系统还提供了数据导出和报表生成等功能,方便用户进行进一步的分析和使用。

4、核心代码


from flask import Flask, render_template
import xlrd
import xlwt
from collections import Counter
# import pandas as pdapp = Flask(__name__)# @app.route('/')
# def hello_world():
#     return 'Hello World!'
@app.route('/')
def index():return render_template("index.html")@app.route('/test')
def test():# workBook1 = xlrd.open_workbook('D:\\ProgramFiles\\docTest\excel\\TeamSettlementDetails.xls')workBook1 = xlrd.open_workbook('templates\\xls\\团队结算明细.xls')sheet1 = workBook1.sheets()[0]aa = Counter(sheet1.col_values(4))moduleName = []# Counter({'other': 7862, 'catering': 2605, 'ticket': 2486, 'hotel': 1343, 'meeting': 979, 'training': 617, 'guid': 407, 'party': 84})moduleName = sorted(set(aa))otherTotal = 0cateringTotal = 0ticketTotal = 0hotelTotal = 0meetingTotal = 0trainingTotal = 0guidTotal = 0partyTotal = 0list = []sheet1_nrows = sheet1.nrows  # 获得行数for i in range(sheet1_nrows):  # 逐行打印sheet1数据if sheet1.row_values(i)[4] == 'catering':# print(sheet1.row_values(i)[6])cateringTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'guid':# print(sheet1.row_values(i)[6])guidTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'ticket':# print(sheet1.row_values(i)[6])ticketTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'hotel':# print(sheet1.row_values(i)[6])hotelTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'meeting':# print(sheet1.row_values(i)[6])meetingTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'other':# print(sheet1.row_values(i)[6])otherTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'party':# print(sheet1.row_values(i)[6])partyTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'training':# print(sheet1.row_values(i)[6])trainingTotal += sheet1.row_values(i)[6]lastNamedict=[]bb(lastNamedict)# 地图展示province=[]nums=[]map(province,nums)return render_template("test.html", moduleName=moduleName, cateringTotal=cateringTotal,guidTotal=guidTotal,ticketTotal=ticketTotal, hotelTotal=hotelTotal, meetingTotal=meetingTotal,otherTotal=otherTotal, partyTotal=partyTotal, trainingTotal=trainingTotal,lastNamedict=lastNamedict,province=province,nums=nums)@app.route('/a')
def a():province = []nums = []map(province, nums)return render_template("a.html",province=province,nums=nums)@app.route('/b')
def b():natu=[]num=[]naturePerson(natu,num)return render_template("b.html",natu=natu,num=num)@app.route('/test2')
def test2():return render_template("test2.html")@app.route('/test3')
def test3():return render_template("test3.html")@app.route('/test33')
def test33():return render_template("test33.html")@app.route('/test4')
def test4():return render_template("test4.html")@app.route('/d')
def d():img_path = '/static/before/images/bg.png'img_stream = return_img_stream(img_path)return render_template('d.html',img_stream=img_stream)"""
这是一个展示Flask如何读取服务器本地图片, 并返回图片流给前端显示的例子
"""
def return_img_stream(img_local_path):"""工具函数:获取本地图片流:param img_local_path:文件单张图片的本地绝对路径:return: 图片流"""import base64img_stream = ''with open(img_local_path, 'r') as img_f:img_stream = img_f.read()img_stream = base64.b64encode(img_stream)return img_stream# 各个景区的人流量
def naturePerson(natu,num):wb = xlrd.open_workbook("templates/xls/团队预定订单旅游板块明细数据.xls")ws = wb.sheet_by_index(0)# print(ws.row_values(0))  # 每一行作为一个列表total_list = []for row in range(ws.nrows):row_list = ws.row_values(row)total_list.append(row_list)# print(total_list)namedict = {}for items in total_list:if items[1] == None or items[1] == "TICKETGROUP_NAME":continueelse:if items[1] in namedict.keys():namedict[items[1]] += items[3]else:namedict.setdefault(items[1], items[3])sortNamedict = sorted(namedict.items(), key=lambda namedict: namedict[1], reverse=True)# print(sortNamedict)lastNamedict = []for i in range(30):lastNamedict.append(sortNamedict[i])# print(lastNamedict)for i in lastNamedict:natu.append(i[0])num.append(i[1])# 旅行社区排行榜
def bb(lastNamedict):wb = xlrd.open_workbook("templates/xls/aaa.xls")ws = wb.sheet_by_index(0)# print(ws.row_values(0))  # 每一行作为一个列表total_list = []for row in range(ws.nrows):row_list = ws.row_values(row)total_list.append(row_list)namedict = {}for items in total_list:if items[5] == None or items[5] == "AGENT_ACCOUNTNAME":continueelse:if items[5] in namedict.keys():namedict[items[5]] += items[8]else:namedict.setdefault(items[5], items[8])sortNamedict = sorted(namedict.items(), key=lambda namedict: namedict[1], reverse=True)for i in range(30):lastNamedict.append(sortNamedict[i])# 地图展示  中国各省份人流量
def map(province,nums):work = xlrd.open_workbook('templates/xls/地图.xls')sheet = work.sheets()[0]data = sheet.col_values(0)tem = Counter(data)fidata = sorted(tem.items(), key=lambda tem: tem[1], reverse=True)for i in fidata:province.append(i[0])nums.append(i[1])if __name__ == '__main__':app.run(port=5000)

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

这篇关于python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566121

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.