基于机器视觉的害虫种类及计数检测研究-人工智能项目-附代码

本文主要是介绍基于机器视觉的害虫种类及计数检测研究-人工智能项目-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

  • 农业与民生和经济发展息息相关,对农业发展科学化的关注既是民生需求,

  • 也是经济稳步发展的迫切需求。病虫害是影响农作物生长的重要因素,对农作物的产量和品质都能造成无法估计的损害。
    -在这里插入图片描述

  • 针对目前广大农业产区农业植保人员稀缺、病虫害识难度大等问题,论文在当前已有的研究基础上进行设计,提出了一套基于机器视觉的远程害虫种类识别
    和数量检测系统,该系统能够在农业产区进行害虫捕杀和图像采集,同时将昆虫 图像上传到虫类鉴别服务器进行昆虫识别。

  • 论文以机器视觉为核心,利用 OpenCV 开源视觉库,研究和实现了昆虫识别的完整流程。论文

研究的内容主要包括:

  • (1) 对昆虫图像进行图像预处理的研究。使用了加权平均法对图像进行灰度化
    处理,再使用高斯滤波对图像进行平滑处理,最后使用大津法对灰度化后的图像 进行二值化处理。
  • (2) 对昆虫图像进行特征提取的研究。使用 OpenCV 对二值化后的图像进行轮
    廓查找,同时实现昆虫计数,然后分别针对昆虫轮廓的矩形度、延长度、似圆度、 球状性、叶状性进行数学定义和特征提取。
  • (3) 对昆虫识别进行了分类器的研究。选取了逻辑斯蒂回归模型、线性 SVM 模 型和 K
    临近模型进行分类器的训练和测试,比较了三种分类器在昆虫识别上的性 能。

论文对基于机器视觉的昆虫种类及数量检测机制进行了研究,并在此基础实
现了昆虫的识别和计数。
在这里插入图片描述

识别

PC 上的昆虫分类识别软件为了能够对本次设计进行原理论证和测试,使用 Python 作为编程语言,开发了一款在 Windows10 上运行的软件。具体程序界面如图 2.7 所示:
在这里插入图片描述
界面中包括:一个用以预览摄像头的窗口,一个用来显示处理之后图像的窗口,一个用来显示识别结果的标签和一个用来点击进行拍照的按钮。
图 2.8 介绍了论文设计的分类识别软件的运行过程。
在这里插入图片描述

昆虫图像的预处理

3.2.1 图像的灰度化,高斯滤波和尺度变换

  • 在机器视觉领域中,灰度图像是指将每个像素通过 8 位非线性尺寸保存,共计 256 种灰度

  • 针对论文进行形态特征提取的方式,进行灰度化即抛弃了不需要的颜色特征等信息,又保留了对于形态特征提取有用的信息,同时易于编程,提高了运算速度。
  • 论文使用灰度处理算法中的加权平均法对昆虫图像进行灰度化处理,由于科学研究中人眼对对蓝色敏感度最低,绿色的敏感度最高,因此,论文按照式(3.1)
    对 RGB 图像中的三种分量进行加权平均,最终能得到合理的灰度图像

gray(݅, ݆) = 0.30 ∗ ܴ(݅, ݆) + 0.59 ∙ ܩ(݅, ݆) + 0.11 ∙ ܤ(݅, ݆) (3.1)

图灰度化后的样本图片,如图 3.3 所示。

3.3.1 检测轮廓

  • 在此次毕业设计中,我使用开源计算机视觉库 OpenCV 作为图像处理的工具,
  • OpenCV 的 Imgproc 模块在物体识别方面提供了函数 findContours()用于对物体 轮廓进行检测,该函数的实现算法是由
    S.Suzuki K. Abe 于 1985 年发表在 CVGIP 上的论文“Toplogical Structrual Analysis
    of Digitized Binary Images by Boder
    Following”[8]中提出的,论文中详细叙述了轮廓决定层次结构的规则以
  • 及轮廓检测的方法,设计中使用 findContours()函数对昆虫图像进行处理,为
    获得昆虫图像中昆虫的轮廓,为之后昆虫轮廓特征值的提取打下基础。

3.3.2 昆虫计数

  • OpenCV 中对于轮廓检测提供了函数findContours(),该函数对昆虫图像预 处理后的二值化图像进行检测,返回一个点集列表,其中每一个点集都代表了图像中封闭的轮廓包含的点的集合。后续的昆虫特征提取都是在检测轮廓得到轮廓 点集列表的基础上完成的。
  • 通过对 findContours()函数返回的点集列表进行计数,点集的个数则大概代表了图像中轮廓的个数,应在在实际场景中,则轮廓的个数代表了一张纸上大米的粒数,也代表了设计场景中一张苍蝇粘板上苍蝇等昆虫的个数。
  • 使用大米计数的样本图片进行原理论证,效果图如图 3.5 所示
    在这里插入图片描述

计数

苍蝇粘板数目检测的实际效果图如图 3.6 所示,
在这里插入图片描述

图 4.2 是获取昆虫图像最小外接矩形和计算矩形度的效果图:

在这里插入图片描述

延长度特征的提取效果如图 4.5 所示:

在这里插入图片描述

昆虫轮廓的球状性特征提取效果如图 4.6 所示

在这里插入图片描述

创新点

设计的创新点在于:

  • (1) 针对农业产区广泛存在的农业害虫检测识别问题,提出了一种基于机器 视觉的害虫种类及数量检测方案。

  • (2) 在参考已有的论文的理论基础之上,提出了针对每一个昆虫形态特征的 提取方案。

  • (3) 在进行分类器训练时,引入了多种分类器算法,并进行训练和测试,能 够在比较分析结果后选择较为理想的分类器算法作为实际使用时的算法。

  • (4) 开发了一套基于 PC 机的识别软件,能够使用摄像头拍着昆虫图片的方 式进行昆虫的识别。

代码

# 全部代码  ------> qq1309399183
# 先读图,然后二值化,通过找轮廓来进行计数import cv2
import numpy as np
from matplotlib import pyplot as pltorigin = cv2.imread('picture/ttt.png')
RiceImg = cv2.imread('picture/ttt.png', 0)blur = cv2.GaussianBlur(RiceImg, (5, 5), 0)# 大津法二值化:此处可以用原理代码来巴拉巴拉一大段
ret, otsu = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 输出阈值
print ret# 找轮廓
contours = cv2.findContours(otsu, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
num = len(contours[1])
print num
# 画轮廓
cv2.drawContours(origin, contours[1], -1, (0, 0, 255), 1)
cv2.putText(origin, 'Insect Num:  ' + str(num), (1, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (50, 50, 50), 2, cv2.LINE_AA)cv2.namedWindow('RiceO', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RiceO', origin)cv2.imwrite('picture/tttresult.jpg',origin)
k = cv2.waitKey(0)# 'ESC'
if k == 27:cv2.destroyAllWindows()

这篇关于基于机器视觉的害虫种类及计数检测研究-人工智能项目-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564518

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=