【最优化方法】对称矩阵的对角化

2024-01-02 11:52

本文主要是介绍【最优化方法】对称矩阵的对角化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 正交化方法
    • 示例
  • 矩阵正交化

正交化方法

R n R^n Rn 中线性无关组 a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,\dots,a_n a1,a2,a3,,an,令
β 1 = α 1 β 2 = α 2 − [ α 2 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 β 3 = α 3 − [ α 3 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − [ α 3 β 2 ] ∣ ∣ β 2 ∣ ∣ β 2 β n = α 3 − [ α n β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − ⋯ − [ α n β n − 1 ] ∣ ∣ β n − 1 ∣ ∣ β n − 1 \begin{aligned} & \beta_1 = \alpha_1 \\ & \beta_2 = \alpha_2 - {\frac{[\alpha_2\beta_1]}{||\beta_1||}} \beta_1 \\ & \beta_3 = \alpha_3 - {\frac{[\alpha_3\beta_1]}{||\beta_1||}} \beta_1 - {\frac{[\alpha_3\beta_2]}{||\beta_2||}} \beta_2 \\ & \beta_n = \alpha_3 - {\frac{[\alpha_n\beta_1]}{||\beta_1||}} \beta_1 - \cdots - {\frac{[\alpha_n\beta_{n-1}]}{||\beta_{n-1}||}} \beta_{n-1} \end{aligned} β1=α1β2=α2∣∣β1∣∣[α2β1]β1β3=α3∣∣β1∣∣[α3β1]β1∣∣β2∣∣[α3β2]β2βn=α3∣∣β1∣∣[αnβ1]β1∣∣βn1∣∣[αnβn1]βn1

该方法称为施密特正交化(Gram–Schmidt process

[ x , y ] [x, y] [x,y] 为向量的内积, ∣ ∣ x ∣ ∣ = [ x , x ] ||x||=[x,x] ∣∣x∣∣=[x,x]
[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [x, y] = x_1y_1 + x_2y_2 + \cdots + x_ny_n [x,y]=x1y1+x2y2++xnyn

示例

将向量组
α 1 = ( 1 , 1 , 0 , 0 ) T , α 2 = ( 1 , 0 , 1 , 0 ) T α 3 = ( − 1 , 0 , 0 , 1 ) T , α 4 = ( 1 , − 1 , − 1 , 1 ) T \begin{align} & \alpha_1=(1,1,0,0)^T,\alpha_2=(1,0,1,0)^T \\ & \alpha_3=(-1,0,0,1)^T,\alpha_4=(1,-1,-1,1)^T \\ \end{align} α1=(1,1,0,0)T,α2=(1,0,1,0)Tα3=(1,0,0,1)T,α4=(1,1,1,1)T

标准正交化

解: 先正交化
β 1 = ( 1 , 1 , 0 , 0 ) T β 2 = ( 1 , 0 , 1 , 0 ) T − 1 2 ( 1 , 1 , 0 , 0 ) T = 1 2 ( 1 , − 1 , 2 , 0 ) T β 3 = ( − 1 , 0 , 0 , 1 ) T + 1 2 ( 1 , 1 , 0 , 0 ) T + 1 6 ( 1 , − 1 , 2 , 0 ) T = 1 3 ( − 1 , 1 , 1 , 3 ) T β 4 = ( 1 , − 1 , − 1 , 1 ) T − 0 − 0 − 0 = ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 =(1,1,0,0)^T \\ & \beta_2 = (1,0,1,0)^T-\frac{1}{2}(1,1,0,0)^T = \frac{1}{2}(1,-1,2,0)^T \\ & \beta_3 = (-1,0,0,1)^T + \frac{1}{2}(1,1,0,0)^T + \frac{1}{6}(1,-1,2,0)^T = \frac{1}{3}(-1,1,1,3)^T \\ & \beta_4 = (1,-1,-1,1)^T-0-0-0=(1,-1,-1,1)^T \end{aligned} β1=(1,1,0,0)Tβ2=(1,0,1,0)T21(1,1,0,0)T=21(1,1,2,0)Tβ3=(1,0,0,1)T+21(1,1,0,0)T+61(1,1,2,0)T=31(1,1,1,3)Tβ4=(1,1,1,1)T000=(1,1,1,1)T

再标准化
β 1 = 1 2 ( 1 , 1 , 0 , 0 ) T β 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T β 3 = 1 2 3 ( − 1 , 1 , 1 , 3 ) T β 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & \beta_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & \beta_3 = \frac{1}{2\sqrt3} (-1,1,1,3)^T \\ & \beta_4 = \frac{1}{2} (1,-1,-1,1)^T \end{aligned} β1=2 1(1,1,0,0)Tβ2=6 1(1,1,2,0)Tβ3=23 1(1,1,1,3)Tβ4=21(1,1,1,1)T

矩阵正交化

A = ( 0 1 1 − 1 1 0 − 1 1 1 − 1 0 1 − 1 1 1 0 ) A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ \end{pmatrix} A= 0111101111011110

求一正交矩阵 P P P,使 P T A P P^{T}AP PTAP 成对角形。

解:
∣ A − λ E ∣ = ∣ − λ 1 1 − 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ∣ 1 − λ 1 − λ 1 − λ 1 − λ 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 0 − λ − 1 − 2 0 0 − 2 − λ − 1 0 0 2 2 1 − λ ∣ = ( 1 − λ ) 2 ( λ 2 + 2 λ − 3 ) = ( λ − 1 ) 3 ( λ + 3 ) \begin{aligned} & |A-\lambda E| ~=~ \begin{vmatrix}-\lambda & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ \begin{vmatrix} 1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} \\\\\\ & =~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -\lambda-1 & -2 & 0 \\ 0 & -2 & -\lambda-1 & 0 \\ 0 & 2 & 2 & 1-\lambda \\ \end{vmatrix} \\\\\\\ & =~ (1-\lambda)^2(\lambda^2+2\lambda-3) = (\lambda-1)^3(\lambda+3) \end{aligned}  AλE =  λ1111λ1111λ1111λ  =  1λ1111λλ111λ1λ11λ11λ = (1λ) 11111λ1111λ1111λ  = (1λ) 10001λ12212λ121001λ = (1λ)2(λ2+2λ3)=(λ1)3(λ+3)

求得 λ 1 = λ 2 = λ 3 = 1 , λ 4 = − 3 \large \lambda_1=\lambda_2=\lambda_3=1, \lambda_4=-3 λ1=λ2=λ3=1,λ4=3

λ 1 = 1 \lambda_1=1 λ1=1 (3重)带入齐次方程组,得
A − E = ( − 1 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 ) = ( 1 − 1 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ) A - E = \begin{pmatrix}-1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\-1 & 1 & 1 & -1 \\ \end{pmatrix}= \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} AE= 1111111111111111 = 1000100010001000 { x 1 = x 2 + x 3 − x 4 x 2 = x 2 x 3 = x 3 x 4 = x 4 = > x 2 ( 1 1 0 0 ) + x 3 ( 1 0 1 0 ) + x 4 ( − 1 0 0 1 ) \begin{cases} x_1 = x_2 + x_3 - x_4 \\ x_2 = x_2 \\ x_3 = ~~~~~~~~~x_3 \\ x_4 = ~~~~~~~~~~~~~~~~~~x_4 \\ \end{cases} => x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+ x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} x1=x2+x3x4x2=x2x3=         x3x4=                  x4=>x2 1100 +x3 1010 +x4 1001

得出基础解系 ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3
ζ 1 = ( 1 1 0 0 ) , ζ 2 = ( 1 0 1 0 ) , ζ 3 = ( − 1 0 0 1 ) \zeta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \zeta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \zeta_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} ζ1= 1100 ,ζ2= 1010 ,ζ3= 1001

ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3 正交化 : 取 η 1 = ζ 1 \eta_1 = \zeta_1 η1=ζ1
η 2 = ζ 2 − [ η 1 , ζ 2 ] ∣ ∣ η 1 ∣ ∣ η 1 = ( 1 0 1 0 ) − 1 2 ( 1 1 0 0 ) = 1 2 ( 1 − 1 2 0 ) η 3 = ζ 3 − [ η 3 , ζ 1 ] ∣ ∣ η 1 ∣ ∣ η 1 − [ η 3 , ζ 2 ] ∣ ∣ η 2 ∣ ∣ η 2 = ( − 1 0 0 1 ) + 1 2 ( 1 1 0 0 ) + 1 6 ( 1 − 1 2 0 ) = 1 3 ( − 1 1 1 3 ) \begin{aligned} & \eta_2 = \zeta_2 - \frac{[\eta_1,\zeta_2]}{||\eta_1||}\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}- \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \\ & \eta_3 = \zeta_3 - \frac{[\eta_3,\zeta_1]}{||\eta_1||}\eta_1- \frac{[\eta_3,\zeta_2]}{||\eta_2||}\eta_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 3 \end{pmatrix} \end{aligned} η2=ζ2∣∣η1∣∣[η1,ζ2]η1= 1010 21 1100 =21 1120 η3=ζ3∣∣η1∣∣[η3,ζ1]η1∣∣η2∣∣[η3,ζ2]η2= 1001 +21 1100 +61 1120 =31 1113

η 1 , η 2 , η 3 \eta_1,\eta_2,\eta_3 η1,η2,η3 单位化求得 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3
p 1 = 1 2 ( 1 , 1 , 0 , 0 ) T p 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T p 3 = 1 12 ( − 1 , 1 , 1 , 3 ) T \begin{aligned} & p_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & p_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & p_3 = \frac{1}{\sqrt{12}} (-1,1,1,3)^T \end{aligned} p1=2 1(1,1,0,0)Tp2=6 1(1,1,2,0)Tp3=12 1(1,1,1,3)T

λ 4 = − 3 \lambda_4=-3 λ4=3 带入齐次方程组,得
A + 3 E = ( 3 1 1 − 1 1 3 − 1 1 1 − 1 3 1 − 1 1 1 3 ) = ( 1 0 0 − 1 0 1 0 1 0 0 1 1 0 0 0 0 ) A + 3E = \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\-1 & 1 & 1 & 3 \\ \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} A+3E= 3111131111311113 = 1000010000101110 { x 1 = x 4 x 2 = − x 4 x 3 = − x 4 x 4 = x 4 = > x 4 ( 1 − 1 − 1 1 ) \begin{cases} x_1 = x_4 \\ x_2 = -x_4 \\ x_3 = -x_4 \\ x_4 = x_4 \\ \end{cases} => x_4 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} x1=x4x2=x4x3=x4x4=x4=>x4 1111

得出基础解系 ζ 4 \zeta_4 ζ4
ζ 4 = ( 1 − 1 − 1 1 ) \zeta_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} ζ4= 1111

ζ 4 \zeta_4 ζ4 单位化,得 p 4 p_4 p4
p 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T p_4 = \frac{1}{2} (1,-1,-1,1)^T p4=21(1,1,1,1)T

p 1 , p 2 , p 3 , p 4 p_1,p_2,p_3,p_4 p1,p2,p3,p4 构成正交矩阵 P P P
P = ( p 1 , p 2 , p 3 , p 4 ) = ( 1 2 1 6 − 1 12 1 2 1 2 − 1 6 1 12 − 1 2 0 2 6 1 12 − 1 2 0 0 3 12 1 2 ) P = (p_1,p_2,p_3,p_4) = \begin{pmatrix} \frac{1}{\sqrt2} & \frac{1}{\sqrt6} & -\frac{1}{\sqrt{12}} & \frac{1}{2} \\ \frac{1}{\sqrt2} & -\frac{1}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & \frac{2}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & 0 & \frac{3}{\sqrt{12}} & \frac{1}{2} \\ \end{pmatrix} P=(p1,p2,p3,p4)= 2 12 1006 16 16 2012 112 112 112 321212121


P T A P = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 − 3 ) P^{T}AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \\ \end{pmatrix} PTAP= 1000010000100003

这篇关于【最优化方法】对称矩阵的对角化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/562362

相关文章

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法

《Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法》在Linux系统中,管理磁盘设备和分区是日常运维工作的重要部分,而lsblk命令是一个强大的工具,它用于列出系统中的块设备(blockde... 目录1. 查看所有磁盘的物理信息方法 1:使用 lsblk(推荐)方法 2:使用 fdisk -l(

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

MySQL查看表的最后一个ID的常见方法

《MySQL查看表的最后一个ID的常见方法》在使用MySQL数据库时,我们经常会遇到需要查看表中最后一个id值的场景,无论是为了调试、数据分析还是其他用途,了解如何快速获取最后一个id都是非常实用的技... 目录背景介绍方法一:使用MAX()函数示例代码解释适用场景方法二:按id降序排序并取第一条示例代码解

Python中合并列表(list)的六种方法小结

《Python中合并列表(list)的六种方法小结》本文主要介绍了Python中合并列表(list)的六种方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录一、直接用 + 合并列表二、用 extend() js方法三、用 zip() 函数交叉合并四、用

Java 中的跨域问题解决方法

《Java中的跨域问题解决方法》跨域问题本质上是浏览器的一种安全机制,与Java本身无关,但Java后端开发者需要理解其来源以便正确解决,下面给大家介绍Java中的跨域问题解决方法,感兴趣的朋友一起... 目录1、Java 中跨域问题的来源1.1. 浏览器同源策略(Same-Origin Policy)1.

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2