【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)

2024-01-02 05:04

本文主要是介绍【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 一、maven依赖
  • 二、示例:时态表的join(scala版本)
      • 1)、统计需求对应的SQL
      • 2)、Without connnector 实现代码
      • 3)、With CSVConnector 实现代码


本文给以scala的语言给出来Table API 针对时态表的join操作。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本文需要有kafka的运行环境。

本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版

一、maven依赖

本文maven依赖参考文章:【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表 中的依赖,为节省篇幅不再赘述。

二、示例:时态表的join(scala版本)

该示例来源于:https://developer.aliyun.com/article/679659
假设有一张订单表Orders和一张汇率表Rates,那么订单来自于不同的地区,所以支付的币种各不一样,那么假设需要统计每个订单在下单时候Yen币种对应的金额。
在这里插入图片描述

1)、统计需求对应的SQL

SELECT o.currency, o.amount, r.rateo.amount * r.rate AS yen_amount
FROMOrders AS o,LATERAL TABLE (Rates(o.rowtime)) AS r
WHERE r.currency = o.currency

2)、Without connnector 实现代码

object TemporalTableJoinTest {def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentval tEnv = TableEnvironment.getTableEnvironment(env)env.setParallelism(1)
// 设置时间类型是 event-time  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)// 构造订单数据val ordersData = new mutable.MutableList[(Long, String, Timestamp)]ordersData.+=((2L, "Euro", new Timestamp(2L)))ordersData.+=((1L, "US Dollar", new Timestamp(3L)))ordersData.+=((50L, "Yen", new Timestamp(4L)))ordersData.+=((3L, "Euro", new Timestamp(5L)))//构造汇率数据val ratesHistoryData = new mutable.MutableList[(String, Long, Timestamp)]ratesHistoryData.+=(("US Dollar", 102L, new Timestamp(1L)))ratesHistoryData.+=(("Euro", 114L, new Timestamp(1L)))ratesHistoryData.+=(("Yen", 1L, new Timestamp(1L)))ratesHistoryData.+=(("Euro", 116L, new Timestamp(5L)))ratesHistoryData.+=(("Euro", 119L, new Timestamp(7L)))// 进行订单表 event-time 的提取val orders = env.fromCollection(ordersData).assignTimestampsAndWatermarks(new OrderTimestampExtractor[Long, String]()).toTable(tEnv, 'amount, 'currency, 'rowtime.rowtime)// 进行汇率表 event-time 的提取val ratesHistory = env.fromCollection(ratesHistoryData).assignTimestampsAndWatermarks(new OrderTimestampExtractor[String, Long]()).toTable(tEnv, 'currency, 'rate, 'rowtime.rowtime)// 注册订单表和汇率表tEnv.registerTable("Orders", orders)tEnv.registerTable("RatesHistory", ratesHistory)val tab = tEnv.scan("RatesHistory");
// 创建TemporalTableFunctionval temporalTableFunction = tab.createTemporalTableFunction('rowtime, 'currency)
//注册TemporalTableFunction
tEnv.registerFunction("Rates",temporalTableFunction)val SQLQuery ="""|SELECT o.currency, o.amount, r.rate,|  o.amount * r.rate AS yen_amount|FROM|  Orders AS o,|  LATERAL TABLE (Rates(o.rowtime)) AS r|WHERE r.currency = o.currency|""".stripMargintEnv.registerTable("TemporalJoinResult", tEnv.SQLQuery(SQLQuery))val result = tEnv.scan("TemporalJoinResult").toAppendStream[Row]// 打印查询结果result.print()env.execute()}}
  • OrderTimestampExtractor 实现如下
import java.SQL.Timestampimport org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.windowing.time.Timeclass OrderTimestampExtractor[T1, T2]extends BoundedOutOfOrdernessTimestampExtractor[(T1, T2, Timestamp)](Time.seconds(10)) {override def extractTimestamp(element: (T1, T2, Timestamp)): Long = {element._3.getTime}
}

3)、With CSVConnector 实现代码

在实际的生产开发中,都需要实际的Connector的定义,下面我们以CSV格式的Connector定义来开发Temporal Table JOIN Demo。

1、genEventRatesHistorySource

def genEventRatesHistorySource: CsvTableSource = {val csvRecords = Seq("ts#currency#rate","1#US Dollar#102","1#Euro#114","1#Yen#1","3#Euro#116","5#Euro#119","7#Pounds#108")// 测试数据写入临时文件val tempFilePath =FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_rate", "tmp")// 创建Source connectornew CsvTableSource(tempFilePath,Array("ts","currency","rate"),Array(Types.LONG,Types.STRING,Types.LONG),fieldDelim = "#",rowDelim = CommonUtils.line,ignoreFirstLine = true,ignoreComments = "%")}

2、genRatesOrderSource


def genRatesOrderSource: CsvTableSource = {val csvRecords = Seq("ts#currency#amount","2#Euro#10","4#Euro#10")// 测试数据写入临时文件val tempFilePath =FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_order", "tmp")// 创建Source connectornew CsvTableSource(tempFilePath,Array("ts","currency", "amount"),Array(Types.LONG,Types.STRING,Types.LONG),fieldDelim = "#",rowDelim = CommonUtils.line,ignoreFirstLine = true,ignoreComments = "%")}

3、主程序

import java.io.Fileimport org.apache.flink.api.common.typeinfo.{TypeInformation, Types}
import org.apache.flink.book.utils.{CommonUtils, FileUtils}
import org.apache.flink.table.sinks.{CsvTableSink, TableSink}
import org.apache.flink.table.sources.CsvTableSource
import org.apache.flink.types.Rowobject CsvTableSourceUtils {def genWordCountSource: CsvTableSource = {val csvRecords = Seq("words","Hello Flink","Hi, Apache Flink","Apache FlinkBook")// 测试数据写入临时文件val tempFilePath =FileUtils.writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")// 创建Source connectornew CsvTableSource(tempFilePath,Array("words"),Array(Types.STRING),fieldDelim = "#",rowDelim = "$",ignoreFirstLine = true,ignoreComments = "%")}def genRatesHistorySource: CsvTableSource = {val csvRecords = Seq("rowtime ,currency   ,rate","09:00:00   ,US Dollar  , 102","09:00:00   ,Euro       , 114","09:00:00  ,Yen        ,   1","10:45:00   ,Euro       , 116","11:15:00   ,Euro       , 119","11:49:00   ,Pounds     , 108")// 测试数据写入临时文件val tempFilePath =FileUtils.writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")// 创建Source connectornew CsvTableSource(tempFilePath,Array("rowtime","currency","rate"),Array(Types.STRING,Types.STRING,Types.STRING),fieldDelim = ",",rowDelim = "$",ignoreFirstLine = true,ignoreComments = "%")}def genEventRatesHistorySource: CsvTableSource = {val csvRecords = Seq("ts#currency#rate","1#US Dollar#102","1#Euro#114","1#Yen#1","3#Euro#116","5#Euro#119","7#Pounds#108")// 测试数据写入临时文件val tempFilePath =FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_rate", "tmp")// 创建Source connectornew CsvTableSource(tempFilePath,Array("ts","currency","rate"),Array(Types.LONG,Types.STRING,Types.LONG),fieldDelim = "#",rowDelim = CommonUtils.line,ignoreFirstLine = true,ignoreComments = "%")}def genRatesOrderSource: CsvTableSource = {val csvRecords = Seq("ts#currency#amount","2#Euro#10","4#Euro#10")// 测试数据写入临时文件val tempFilePath =FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_order", "tmp")// 创建Source connectornew CsvTableSource(tempFilePath,Array("ts","currency", "amount"),Array(Types.LONG,Types.STRING,Types.LONG),fieldDelim = "#",rowDelim = CommonUtils.line,ignoreFirstLine = true,ignoreComments = "%")}/*** Example:* genCsvSink(*   Array[String]("word", "count"),*   Array[TypeInformation[_] ](Types.STRING, Types.LONG))*/def genCsvSink(fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[Row] = {val tempFile = File.createTempFile("csv_sink_", "tem")if (tempFile.exists()) {tempFile.delete()}new CsvTableSink(tempFile.getAbsolutePath).configure(fieldNames, fieldTypes)}}

4、运行结果
在这里插入图片描述

以上,本文给以scala的语言给出来Table API 针对时态表的join操作。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版

这篇关于【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/561410

相关文章

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的