使用sinox2019ai进行深度学习,tensorflow也可以

2024-01-02 04:18

本文主要是介绍使用sinox2019ai进行深度学习,tensorflow也可以,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用sinox2019ai进行深度学习

sinox2019ai作为领先的操作系统,自然有其非凡之处。

运行pycharm-ce可视化python集成开发工具

选择python解析器,可以是python2.5,3.5,3,6

最后选择python2.7,这要看你需要的运行环境决定。2.7和3.6的代码并不兼容、

scikit-learn简称sklearn,支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。
多层感知机MLPRegressor 类和 MLPClassifier 类都使用参数 alpha 作为正则化( L2 正则化)系数,正则化通过惩罚大数量级的权重值以避免过拟合问题。

在外部库site-package查看sklean文件


Caffe,全称Convolutional Architecture for Fast Feature Embedding。是一种常用的深度学习框架,主要应用在视频、图像处理方面的应用上。
caffe是一个清晰,可读性高,快速的深度学习框架。

Theano是一个Python库,专门用于定义、优化、求值数学表达式,效率高,适用于多维数组。特别适合做机器学习。一般来说,使用时需要安装python和numpy.
首先回顾一下机器学习的东西,定义一个模型(函数)f(x;w) x为输入,w为模型参数,然后定义一个损失函数c(f),通过数据驱动在一堆模型函数中选择最优的函数就是训练training的过程,在机器学习中训练一般采用梯度下降法gradient descent.

Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:
简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
支持CNN和RNN,或二者的结合
无缝CPU和GPU切换

tensorflow目前未支持,是因为tensorflow是采用nvidia显卡cuda和cudnn专用并行计算架构,而nvidia只发布了windows和linux的cuda版本,sinox使用opengl进行图形并行计算,采用通用架构opencl进行并行计算。
在sinox使用opencl调用gpu的并行计算功能实现3D渲染。有人研究用Theano+OpenCL+libgpuarray实现GPU运算。从长远看nvidia提供opencl接口或者使用别的显卡进行计算都是可能的。

最后运行keras深度学习例子:手写数字识别

运行警告说没有安装g++无法优化,进入/usr/local/bin 执行ln -s g++6  g++做了g++的链接,就可以通过报警。
重新运行后速度快了很多,好像用了gpu,测试集准确率98%。


代码如下

import os
os.environ['KERAS_BACKEND']='theano'

from keras import models
from keras import  layers
from keras.datasets import mnist
from keras.utils import to_categorical


(train_images,train_labels),(test_images,test_labels)=mnist.load_data()
print(train_images.shape)

network=models.Sequential()
network.add(layers.Dense(512,activation='relu',input_shape=(28*28,)))
network.add(layers.Dense(10,activation='softmax'))

network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

train_images=train_images.reshape((60000,28*28))
train_images=train_images.astype('float32')/255
test_images=test_images.reshape((10000,28*28))
test_images=test_images.astype('float32')/255

train_labels=to_categorical(train_labels)
test_labels=to_categorical(test_labels)

network.fit(train_images,train_labels,epochs=5,batch_size=128)

test_loss,test_acc = network.evaluate(test_images,test_labels)
print('test_acc:',test_acc)

tensorflow惊喜!

汉澳sinox2019ai安装tensorflow

sinox没有tensorflow总觉得缺少些什么。于是找到了做好的tensorflow安装包。地址:https://github.com/amutu/tf-freebsd-pkg/tree/master/11.1-amd64
先下载好,用pkg add py27-tensorflow-1.2.1.txz安装。安装使用了py27-backports.weakref-1.0.r1.txz,跟已经安装的py27-backports有冲突。于是进入/usr/ports/py-backports运行make deinstall卸载,不能用pkg delete卸载,因为它会把依赖安装包也卸载导致系统不稳。然后提示出现缺少一些库,就进入对应的ports目录make install,可以用pkg install但是你需要学会配置/etc/pkg/FreeBSD.conf指向freebsd的安装包网站目录。最后终于可以运行了,但是只有1.2.1版本。也不支持gpu。


 

这篇关于使用sinox2019ai进行深度学习,tensorflow也可以的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561303

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格