java零拷贝zero copy MappedByteBuffer

2024-01-02 01:04

本文主要是介绍java零拷贝zero copy MappedByteBuffer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

调用操作系统的 mmap

未使用 mmap 的文件通过网络传输的过程

使用 mmap 的文件通过网络传输的过程

使用例子

调用操作系统的 sendfile()

在 java 中的具体实现

mmap的优劣

mmap 的不足

mmap 的优点

mmap 的使用场景


对于零拷贝(zero copy),目前操作系统支持多种方式,具体如下

调用操作系统的 mmap

在之前的页缓存文章的基础上

https://blog.csdn.net/zlpzlpzyd/article/details/135317588

如果在 linux 上如果直接对 page cache 怎么办?

鉴于 java 语言是建立在 jvm 基础上调用操作系统的 api 来对机器资源进行访问的,可以通过 mmap 来实现,从 java 1.4 开始提供了 FileChannel 的 map() 来实现这个功能,这样就可以类似指针的方式来直接操作文件了。这样带来的好处是,不用进行用户态和内核态的切换了,减少了机器的资源开销。

未使用 mmap 的文件通过网络传输的过程

可见发生了4次用户态与内核态的上下文切换(调用 read()后返回数据与调用write()后返回数据),4次数据拷贝(两次DMA拷贝,两次CPU拷贝)。
传统的IO性能是非常差的,所以,要想提高文件传输的性能,就需要减少用户态与内核态的上下文切换和内存拷贝的次数。

使用 mmap 的文件通过网络传输的过程

需要 4 次上下文切换,因为系统调用还是 2 次。但是拷贝从4次变成了3次。

使用例子

java 中通过 MappedByteBuffer 来实现直接对 page cache 的操作。

import java.io.IOException;
import java.io.Serializable;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;public class TestMapMemeryBuffer2 implements Serializable {private final static String CONTENT = "Zero copy implemented by MappedByteBuffer";private final static String FILE_NAME = "mmap.txt";public static void main(String[] args) throws IOException {xieshuju();dushuju();}public static void xieshuju() throws IOException {/**写文件数据* 打开文件通道 fileChannel 并提供读权限、写权限和数据清空权限,通过 fileChannel 映射到一个可写的内存缓冲区 mappedByteBuffer,* 将目标数据写入 mappedByteBuffer,通过 force() 方法把缓冲区更改的内容强制写入本地文件。*/Path path = Paths.get("E:/data",FILE_NAME);if (Files.notExists(path)) {Files.createDirectories(path.getParent());Files.createFile(path);}byte[] bytes = CONTENT.getBytes(StandardCharsets.UTF_8);try (FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.READ,StandardOpenOption.WRITE, StandardOpenOption.TRUNCATE_EXISTING)) {MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, bytes.length);if (mappedByteBuffer != null) {mappedByteBuffer.put(bytes);mappedByteBuffer.force();}} catch (Throwable e) {e.printStackTrace();}}public static void dushuju() throws IOException {/*** 读文件数据:打开文件通道 fileChannel 并提供只读权限,通过 fileChannel 映射到一个只可读的内存缓冲区 mappedByteBuffer,* 读取 mappedByteBuffer 中的字节数组即可得到文件数据。* */Path path = Paths.get("E:/data",FILE_NAME);if (Files.notExists(path)) {Files.createDirectories(path.getParent());Files.createFile(path);}int length = CONTENT.getBytes(StandardCharsets.UTF_8).length;try (FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.READ)) {MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, length);if (mappedByteBuffer != null) {byte[] bytes = new byte[length];mappedByteBuffer.get(bytes);String content = new String(bytes, StandardCharsets.UTF_8);System.out.println(content);}} catch (Throwable e) {e.printStackTrace();}}
}

调用操作系统的 sendfile()

在 Linux 内核版本 2.1 中,提供了1个专门发送文件的系统调用函数 sendfile()。

它可以替代前面的 read() 和 write() 这两个系统调用,这样就可以减少1次系统调⽤,文件传输变为在操作系统执行,不需要应用程序的参与,也就减少了 2 次上下文切换的开销。

这样就只有 2 次上下文切换,和 3 次数据拷贝。

在 java 中的具体实现

FileChannel 的 transferFrom() 和 transferTo()。

两者使用调用方式不同,transferFrom() 是目标 FileChannel 调用,transferTo() 是源 FileChannel 调用。

https://blog.csdn.net/weixin_44371237/article/details/122322890

以上的还不是真正的零拷贝技术,如果网卡支持 SG-DMA(The Scatter-Gather DirectMemory Access)技术(和普通的 DMA 有所不同),可以减少通过 CPU 把内核缓冲区的数据拷贝到 socket 缓冲区的过程。

Linux运行这条命令查看网卡是否支持 SG-DMA

$ ethtool -k eth0 | grep scatter-gather
scatter-gather: on

这样,最终只有2次上下文切换和2 次数据拷贝。

mmap的优劣

mmap 的不足

鉴于操作系统的 page cache 为 4KB,所以在使用过程中最好是 4KB 的整数倍,不然会造成内存空间浪费。

map方法中 size 的类型是 long,但是在注释中指定不能大于 Integer#MAX_VALUE,也就是2147483647字节,换算一下大概是2G。也就是说 MappedByteBuffer 的最大值是2G,一次最多只能 map 2G 的数据。

由于 MappedByteBuffer 最终的实现类为 DirectByteBuffer,即使用了堆外内存,这就使得在使用的时候对内存回收时变得困难。
如果针对大文件使用 MappedByteBuffer,会造成内存不足的情况,其他一些经常使用的文件会造成经常被回收的情况(因为 page cache 的在操作系统实现了 lru 算法来处理)。

mmap内存映射的大小始终是整数页,因此对于文件实际大小和映射的空间之间多少会有差异,这个差异的空间是被浪费的,对于小文件来说这个浪费比例被放大,因此 mmap 更适合频繁操作的大文件。频繁映射大量不同大小的内存,会导致内存碎片化。

针对大文件的传输,不应该使用 Page Cache,也就是说不应该使用零拷贝技术,因为可能由于 Page Cache 被大文件占据,由于大文件难以命中 Page Cache 缓存,导致热点小文件无法命中 Page Cache,这样在高并发的环境下,会带来严重的性能问题。

传输大文件的时候,使用异步 IO + 直接 IO,因为可以绕过 Page Cache
传输小文件的时候,使用零拷贝技术
 

针对所谓的文件大小的定义,需要通过压力测试来验证一下,这个需要后面看一下。

MappedByteBuffer 是没有close方法的,即使它的 FileChannel 被close了,MappedByteBuffer 仍然处于打开状态,只有JVM进行垃圾回收的时候才会被关闭。而这个时间是不确定的。

对于具体的写入磁盘时间是由操作系统来决定的,如果想要马上写入磁盘需要手动调用 force()。

mmap 的优点

mmap基于操作系统的 mmap 的内存映射技术,通过 MMU 映射文件,将文件直接映射到用户态的内存地址,使得对文件的操作不再是 write/read,而转化为直接对内存地址的操作,使随机读写文件和读写内存相似的速度。

把文件映射到用户空间里的虚拟内存,省去了从内核缓冲区复制到用户空间的过程,文件中的位置在虚拟内存中有了对应的地址,可以像操作内存一样操作这个文件,这样的文件读写文件方式少了数据从内核缓存到用户空间的拷贝,效率很高。

将用户态和内核态的重操作减少了。

mmap 的使用场景

频繁操作的文件,因为是基于 page cache 实现的,主要将磁盘的文件暂时缓存到内存中。如果只是用一次或者次数很少,放在内存里没有必要。

参考链接

https://blog.csdn.net/alex_xfboy/article/details/90174840

https://blog.csdn.net/bookssea/article/details/122099186

https://blog.csdn.net/qq_45038038/article/details/134975039

https://blog.csdn.net/qq_39668099/article/details/130240286

https://juejin.cn/post/6921977140946845704

https://blog.csdn.net/m0_50662680/article/details/128420713

https://www.cnblogs.com/flydean/p/io-nio-mappedbytebuffer.html

https://blog.csdn.net/yzh_1346983557/article/details/119760911

https://www.cnblogs.com/sky-heaven/p/16280797.html

https://mp.weixin.qq.com/s/oPv1-wrhYjiOC1o0M0tjMA

https://www.cnblogs.com/jmcui/p/15256464.html

https://www.cnblogs.com/liujinhui/p/15847633.html

https://zhuanlan.zhihu.com/p/377237946

https://blog.csdn.net/andybegin/article/details/129304899

https://blog.csdn.net/dyuan134/article/details/130126955

https://zhuanlan.zhihu.com/p/54762255

https://tech.meituan.com/2017/05/19/about-desk-io.html

https://www.jianshu.com/p/59dad2d290a1

https://www.jianshu.com/p/c83fa8bd564f

https://blog.csdn.net/NF_ALONG/article/details/129399559

https://zhuanlan.zhihu.com/p/439380628

https://blog.csdn.net/xystrive/article/details/125692926

https://zhuanlan.zhihu.com/p/607416958

https://zhuanlan.zhihu.com/p/665075935

这篇关于java零拷贝zero copy MappedByteBuffer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560961

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

javacv依赖太大导致jar包也大的解决办法

《javacv依赖太大导致jar包也大的解决办法》随着项目的复杂度和依赖关系的增加,打包后的JAR包可能会变得很大,:本文主要介绍javacv依赖太大导致jar包也大的解决办法,文中通过代码介绍的... 目录前言1.检查依赖2.更改依赖3.检查副依赖总结 前言最近在写项目时,用到了Javacv里的获取视频

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H