【NLP论文】03 基于 jiagu 的情感分析

2024-01-01 18:28
文章标签 分析 论文 03 nlp 情感 jiagu

本文主要是介绍【NLP论文】03 基于 jiagu 的情感分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇是NLP论文系列的最后一篇,主要介绍如何计算情感分析结果,并将其融入到XX评价体系和物流关键词词库,之前我已经写了两篇关于情感分析的文章,分别是 SnowNLP 和 Cemotion 技术,最终我才用了 jiagu 来写我的论文,因为 jiagu 准确率还行,并且写这个技术的毕竟少。 

目录

1 基于 Jiagu 的情感分析

1.1  Jiagu 介绍

1.2  情感分析计算

① 语料

② Jiagu 计算

③ xx 关键词匹配

2 XX评价体系结合情感分析


代码地址:nlp_yinyu

1 基于 Jiagu 的情感分析

Jiagu 和 SnowNLP + Cemotion 类似,均是情感分析技术之一,另外两种技术文章也在该专栏下,采用哪种看大家如何选择,本文主要介绍如何将情感分析技术融入到论文中。

1.1  Jiagu 介绍

Jiagu 情感分析是一种中文自然语言处理工具,用于识别和分析文本中的情感倾向,它可以根据文本的内容和语义,判断文本中的情感是积极的、消极的还是中性的。

它使用机器学习算法和自然语言处理技术来处理文本,并通过训练模型来识别情感。该工具可以应用于各种文本数据,如社交媒体评论、新闻文章、产品评论等。

Jiagu情感分析具有以下特点:高准确性、快速处理和多种应用场景。

1.2  情感分析计算

① 语料

语料依然是以之前爬取的京东网站上的 5000 条评论数据,可在文章顶部的代码仓库中下载!

② Jiagu 计算

主要分为以下三步:

  1. 引入语料 excel 数据
  2. 计算每条评论的情感值
  3. 生成【Jiagu情感分析原始结果_京东.xlsx】文件

代码如下:

import pandas as pd
import jiagu
from base_handle import BaseHandle  # 引入工具类baseHandle = BaseHandle()  # 实例化def jiagu_cal(url):'''计算每条评论的情感值'''df = pd.read_excel(url, sheet_name='Sheet1')# print(df)# 定义函数,批量处理所有的评论信息def get_sentiment_cn(text):return jiagu.sentiment(text)[1]  # jiagu的后边带positive或negative# 根据df里的“comments”列,将读取文本后的情感分析结果添加到新的一列,命名为“sentiment”df["sentiment"] = df['评论'].apply(get_sentiment_cn)# print(df)# 储存为表格。df.to_excel('Jiagu情感分析原始结果_京东.xlsx')if __name__ == "__main__":jiagu_cal(baseHandle.get_file_abspath('语料库_京东_5000条评论.xlsx'))

最终输出【Jiagu情感分析原始结果_京东.xlsx】文件如下:

每条评论都给安排了一个情感值~

③ xx 关键词匹配

以物流关键词词库为例,将每个关键词的情感值计算出来,本文的计算逻辑:统计该关键词在多少条评论中存在,若存在,则这些评论的情感值加和。

步骤如下:

  1. 读取物流关键词词库
  2. 统计每个关键词的情感值大小
  3. 生成【jiagu情感分析匹配结果_京东.xlsx】文件
import pandas as pd
import jiagu
from base_handle import BaseHandle  # 引入工具类baseHandle = BaseHandle()  # 实例化def match_words_jiagu():'''匹配关键词和情感分析结果'''words = baseHandle.logistics_listitems = []for word in words:row = handle_senti_result(word, "评论", "情感值")row.insert(0, word)items.append(row)dt = pd.DataFrame(items, columns=['关键词', '评论数量', '好评率', '情感值方差', '情感均值', '情感中值'])dt.to_excel("jiagu情感分析匹配结果_京东.xlsx")def handle_senti_result(word, col1, col2):'''子方法—统计每个关键词的情感值大小'''df = pd.read_excel('Jiagu情感分析原始结果_京东.xlsx', sheet_name='Sheet1')b1 = []b2 = []for i in range(len(df)):comment = df.loc[i, col1]if word in comment:  # 判断关键词是否存在于某个字符串(str)中a1 = df.loc[i, col1]a2 = df.loc[i, col2]if not a1 in b1:  # col1:评论,col2:情感值,去掉重复的评论,也可不去掉b1.append(a1)b2.append(a2)else:continueelse:continuef1 = pd.DataFrame(columns=['评论', '情感值'])f1['评论'] = b1f1['情感值'] = b2# print('分值之和:',f1['情感值'].sum())seti = f1['情感值']# 一些列数据row = [seti.count(), f1[seti >= 0.6]['情感值'].count() / seti.count(),seti.var(), seti.mean(), seti.median()]return rowif __name__ == "__main__":match_words_jiagu()

最终输出【jiagu情感分析匹配结果_京东.xlsx】文件如下:

如图,得到了每个关键词的情感分析详细数据,那么就可以拿这些数据来做些其他事情了~

2 XX评价体系结合情感分析

以物流评价体系为例,结合 TF-IDFJiagu 情感分析结果(本文只采用了它的情感均值)

如图:

这是一个比较粗略的统计结果,可以展示各维度他的重要程度以及情感值(或者说评分大小),不要忘了语料来自于网上在线评论。

以上还可以做更多研究,希望给大家提供帮助。因为毕业论文用到了这些技术,所以想着总结一下,最近终于有空把它更完了,纪念一下学生时代~

这篇关于【NLP论文】03 基于 jiagu 的情感分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560130

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三