代码随想录-刷题第四十三天

2024-01-01 18:04

本文主要是介绍代码随想录-刷题第四十三天,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1049. 最后一块石头的重量 II

题目链接:1049. 最后一块石头的重量 II

思路:本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成0-1背包问题了。与416. 分割等和子集非常相似。

动态规划五步曲:

  1. dp[j]:容量(其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

    可以回忆一下0-1背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

    相对于 0-1背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  2. 递推公式:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])

    0-1背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

  3. 初始化:0-1背包分割子集问题,dp数组的长度为物品总重量的一半。dp[0] = 0,因为重量都不会是负数,其他非0下标处也为0。

  4. 遍历顺序:先顺序遍历物品,再倒序遍历背包容量(防止重复放入)。

  5. 举例推导dp数组

    输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

    1049.最后一块石头的重量II

    最后dp[target]里是容量为target的背包所能背的最大重量。

    那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

    在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

class Solution {public int lastStoneWeightII(int[] stones) {// dp[j] 表示容量为j的背包,最多可以背最大重量为dp[j]。int sum = 0;for (int stone : stones) {sum += stone;}int target = sum / 2;// dp数组的长度为物品总重量的一半int[] dp = new int[target + 1];for (int i = 0; i < stones.length; i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - dp[target] - dp[target];}
}

494. 目标和

题目链接:494. 目标和

思路:假设加法的总和为x,那么减法对应的总和就是sum - x。所以我们要求的是 x - (sum - x) = target,进而x = (target + sum) / 2。此时问题就转化为,装满容量为x的背包,有几种方法。这里的x,就是bagSize,也就是我们后面要求的背包容量。

再回归到0-1背包问题,为什么是0-1背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

本题就变成了0-1背包求组合问题,动态规划五步曲:

  1. dp[j]:填满j(包括j)这么大容积的背包,有dp[j]种方法。

  2. 递推公式:dp[j] += dp[j - nums[i]]

    只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

    例如:dp[j],j 为5,

    • 已经有一个1(即nums[i] = 1)的话,有 dp[4]种方法 凑成 容量为5的背包
    • 已经有一个2(即nums[i] = 2)的话,有 dp[3]种方法 凑成 容量为5的背包
    • 已经有一个3(即nums[i] = 3)的话,有 dp[2]中方法 凑成 容量为5的背包
    • 已经有一个4(即nums[i] = 4)的话,有 dp[1]中方法 凑成 容量为5的背包
    • 已经有一个5(即nums[i] = 5)的话,有 dp[0]中方法 凑成 容量为5的背包

    那么凑成dp[5]有多少方法呢,也就是把所有的 dp[j - nums[i]] 累加起来。

    这个递推公式在之后背包解决排列组合问题的时候还会用到!

  3. 初始化:dp[0] = 1

    因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

  4. 遍历顺序:nums放在外循环,bagSize 在内循环,且内循环倒序。

  5. 举例推导dp数组

    输入:nums: [1, 1, 1, 1, 1], target: 3

    bagSize = (target + sum) / 2 = (3 + 5) / 2 = 4

    dp数组状态变化如下:

    img

class Solution {public int findTargetSumWays(int[] nums, int target) {// dp[j] 表示填满容量为j的背包,共有dp[j]种方法int sum = 0;for (int num : nums) {sum += num;}if ((target + sum) % 2 != 0) return 0; // 此时没有方案if (Math.abs(target) > sum) return 0;  // 此时没有方案// 背包的容量为nums里面需要相加的总值int bagSize = (target + sum) / 2;int[] dp = new int[bagSize + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = bagSize; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[bagSize];}
}

看到(target + sum) / 2 应该考虑计算的过程中向下取整有没有影响。

例如 sum 是5,target 是2的话,不能被2整除其实就是无解的;

同时如果 target 的绝对值已经大于 sum,sum 将无法满足

例如[1,1,1,1,1] target = 6,而 sum 最大只能达到5。

本题也可以用回溯法进行暴力搜索,但是执行时间会过长。如果仅仅是求个数的话,就可以用dp,但回溯算法:39. 组合总和要求的是把所有组合列出来,还是要使用回溯法的。


474. 一和零

题目链接:474. 一和零

思路:本题中strs 数组里的元素就是物品,每个物品都是一个!而 m 和 n 相当于是一个背包,两个维度的背包

本题依然是0-1背包问题,但是背包有两个维度,就是存放0的个数和存放1的个数,而不同长度的字符串就是不同大小的待装物品。

动态规划五步曲:

  1. dp[i][j]:最多由i个0和j个1的strs的最大子集的大小为dp[i][j]

  2. 递推公式:

    dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)

    dp[i][j]可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。在遍历的过程中,取dp[i][j]的最大值。

    0-1背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    对比一下就会发现,字符串的zeroNumoneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

    这就是一个典型的0-1背包! 只不过物品的重量有了两个维度而已。

  3. 初始化:dp[0][0] = 0

    因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  4. 遍历顺序:先顺序遍历物品,再倒序遍历背包容量。

    物品就是strs里的字符串,背包容量就是题目描述中的m和n。

  5. 举例推导dp数组

    以输入:[“10”,“0001”,“111001”,“1”,“0”],m = 3,n = 3为例

    最后dp数组的状态如下所示:

    474.一和零

class Solution {public int findMaxForm(String[] strs, int m, int n) {// dp[i][j] 代表最多由i个0和j个1的最大子集大小为dp[i][j]int[][] dp = new int[m + 1][n + 1];for (String str : strs) { // 遍历物品int zeroNum = 0, oneNum = 0;char[] chs = str.toCharArray();for (char ch : chs) {if (ch == '0') {zeroNum++;} else {oneNum++;}}// 遍历背包容量且从后往前遍历!for (int i = m; i >= zeroNum; i--) {for (int j = n; j >= oneNum; j--) {dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
}

那个遍历背包容量的两层for循环先后顺序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!


0-1背包总结

0-1背包有多种应用(不同维度上的应用):

  • 纯 0-1 背包是求给定背包容量,装满背包的最大价值是多少。
  • 416. 分割等和子集是求给定背包容量,能不能装满这个背包。
  • 1049. 最后一块石头的重量 II是求给定背包容量,尽可能装,最多能装多少。
  • 494. 目标和是求给定背包容量,装满背包有多少种方法。
  • 474. 一和零是求给定背包容量,装满背包最多有多少个物品。

这篇关于代码随想录-刷题第四十三天的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560073

相关文章

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部