循环生成对抗网络(CycleGAN)

2024-01-01 01:36

本文主要是介绍循环生成对抗网络(CycleGAN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。

二、基本介绍

        CycleGAN 是图像到图像的翻译模型,就像Pix2Pix一样。Pix2Pix模型面临的主要挑战是训练所需的数据应该配对,即源域和目标域的图像应该位于相同的位置,并且两个域的图像数量也应该相同。

        循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。例如:从 SAR 生成 RGB 图像、从 RGB 生成多光谱图像、从卫星图像生成地图路线等。

        该模型是 Pix2Pix 架构的扩展,涉及两个生成器模型和两个判别器模型的同时训练。除了 Pix2Pix 的功能之外,我们还可以使用不配对的数据集,并且还可以使用相同的模型反向转换图像(目标到源图像)。

三、模型架构

图 1. CycleGAN 架构概述:从卫星图像转换到地图路线域 [3]

        要了解 GAN 的基础知识,可以参考Pix2Pix 指南。

        该模型架构由两个生成器模型组成:一个生成器(Generator-A)用于生成第一个域(Domain-A)的图像,第二个生成器(Generator-B)用于生成第二个域(Domain-B)的图像。

  • 域-B ->生成器-A -> 域-A
  • 域-A ->生成器-B -> 域-B

        每个生成器都有一个相应的判别器模型(判别器-A 和判别器-B)。鉴别器模型从域中获取真实图像并从生成器中获取生成的图像来预测它们是真还是假。

  • 域-A ->鉴别器-A -> [真/假]
  • 域-B -> 生成器-A ->判别器-A -> [真/假]
  • 域-B ->鉴别器-B -> [真/假]
  • 域-A -> 生成器-B ->判别器-B -> [真/假]

在 中arcgis.learn,所有判别器和生成器都被分组为一个模型。

四、训练时loss是如何计算的?

        用于训练生成器的损失由三部分组成:

  1.         对抗性损失:我们将对抗性损失应用于两个生成器,其中生成器尝试生成其域的图像,而其相应的判别器区分翻译样本和真实样本。生成器的目标是最小化这种损失,而相应的判别器则试图最大化这种损失。
    1.         循环一致性损失:它捕捉到了这样的直觉:如果我们将图像从一个域转换到另一个域并再次转换回来,我们应该到达我们开始的地方。因此,它计算原始图像和最终生成图像之间的 L1 损失,该图像应该看起来与原始图像相同。从两个方向进行计算:
  • 正向循环一致性:域-B ->生成器-A -> 域-A ->生成器-B -> 域-B
  • 后向循环一致性:Domain-A -> Generator-B -> Domain-B -> Generator-A -> Domain-A
  1.         身份丢失:它鼓励生成器保留输入和输出之间的颜色成分。这是通过向生成器提供目标域的图像作为输入并计算输入和生成图像之间的 L1 损失来完成的。
*   Domain-A -> **Generator-A** -> Domain-A
*   Domain-B -> **Generator-B** -> Domain-B

        由于所有这些损失函数在获得高质量结果方面都发挥着关键作用。因此,这两个生成器模型都是通过所有这些损失函数的组合来优化的。

五、实施于arcgis.learn

        首先,我们必须使用arcgis pro中的格式导出图像芯片,然后使用中的函数Export Tiles创建一个databunchprepare_dataarcgis.learn

data = arcgis.learn.prepare_data(path=r"path/to/exported/data", dataset_type='CycleGAN')

        要传递的重要参数是:

  • path数据目录。我们需要遵循图2所示的目录结构。这里,“train_a”和“train_b”文件夹包含域A和B的图像。

图 2. 目录结构

  • dataset_type“CycleGAN”。

        创建数据束后,我们可以通过调用初始化 CycleGAN 对象

cyclegan_model = arcgis.learn.CycleGAN(data)

        与其他一些模型不同,我们从头开始训练 CycleGAN,某些初始时期的学习率为 0.0002,然后在下一个时期将学习率线性衰减到零。

        然后我们可以继续基本的 arcgis.learn 工作流程。有关 API 和模型的更多信息,请访问API 参考。

参考

[1] Jun-Yan Zhu,Taesung Park,Phillip Isola,Alexei A. Efros,“使用循环一致对抗网络的不配对图像到图像翻译”,2017;arXiv:1703.10593。

[2] Jason Brownlee:Cyclegan 教程。访问日期:2020 年 9 月 29 日。

[3]。康宇豪、高松和罗伯特·E·罗斯。“使用生成对抗网络传输多尺度地图样式。” 国际制图杂志 5,no。2-3(2019):115-141。

这篇关于循环生成对抗网络(CycleGAN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557820

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.