matlab实践(一):利用ode45和四阶龙哥库塔解二阶耦合微分方程

2023-12-31 21:50

本文主要是介绍matlab实践(一):利用ode45和四阶龙哥库塔解二阶耦合微分方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.题目

\begin{aligned} \frac{d^2R_1}{dt^2}+\frac32\frac1{R_1}\bigg(\frac{dR_1}{dt}\bigg)^2+\frac{4\mu}{\rho R_1^2}\frac{dR_1}{dt}+\frac{R_2^2}{R_1L}\bigg[\frac{d^2R_2}{dt^2}+\frac2{R_2}\bigg(\frac{dR_2}{dt}\bigg)^2\bigg] \\ =\frac{1}{R_{1}\rho}\Bigg[p_{_{v}}-p_{_{0}}-\frac{2\sigma}{R_{_{1}}}+p_{_{1g0}}\Bigg(\frac{R_{_{10}}}{R_{_{1}}}\Bigg)^{3n}-P\Bigg] \\ \frac{d^{2}R_{2}}{dt^{2}}+\frac{3}{2}\frac{1}{R_{2}}\bigg(\frac{dR_{2}}{dt}\bigg)^{2}+\frac{4\mu}{\rho R_{2}^{2}}\frac{dR_{2}}{dt}+\frac{R_{1}^{2}}{R_{z}L}\bigg[\frac{d^{2}R_{1}}{dt^{z}}+\frac{2}{R_{_1}}\bigg(\frac{dR_{_1}}{dt}\bigg)^{2}\bigg]\\ =\frac{1}{R_{2}\rho}\Bigg[p_{_{v}}-p_{_{0}}-\frac{2\sigma}{R_{_{2}}}+p_{_{2g0}}\Bigg(\frac{R_{_{20}}}{R_{_{2}}}\Bigg)^{3n}-P\Bigg] \\ \end{aligned}

2.ode45

2.1工具箱介绍

ode45 - 求解非刚性微分方程 - 中阶方法

    此 MATLAB 函数(其中 tspan = [t0 tf])求微分方程组 y'=f(t,y) 从 t0 到 tf 的积分,初始条件为 y0。解数组 y
    中的每一行都与列向量 t 中返回的值相对应。

    [t,y] = ode45(odefun,tspan,y0)
    [t,y] = ode45(odefun,tspan,y0,options)
    [t,y,te,ye,ie] = ode45(odefun,tspan,y0,options)
    sol = ode45(___)

2.2求解过程

利用{y_{1}}'=f_{1},{y_{2}}'=f_{2},将这二阶方程化为四个方程,编写函数利用ode45求解,得出结果。

function dy=kongqi(t,y)
n=1.4;
p=1e3;
p_o=2e5;
p_v=1e5;
u=1e-3;
b=7.061e-2;
p_1go=2e4;
p_2go=2e4;
a1=1e-4;
a2=1e-4;
P=5e5*sin(2e4*pi*t);
L=1e-3;
dy=zeros(4,1);
dy(1)=y(2);
dy(2)=-1.5/y(1)*y(2)^2-4*u/(p*y(1)^2)*y(2)-y(3)^2/(y(1)*L)*(dy(4)+2/y(3)*y(4)^2)+1/(y(1)*p)*(p_v-p_o-2*b/y(1)+p_1go*(a1/y(1))^(3*n)-P);
dy(3)=y(4);
dy(4)=-1.5/y(3)*y(4)^2-4*u/(p*y(3)^2)*y(4)-y(1)^2/(y(3)*L)*(dy(2)+2/y(1)*y(2)^2)+1/(y(3)*p)*(p_v-p_o-2*b/y(3)+p_2go*(a2/y(3))^(3*n)-P);
end

这是调用ode45求解。

clc;clear;
tspan=[0 1.5e-5];
y0=[1e-4,0,1e-4,0];
[t1,y1] = ode45('kongqi',tspan,y0);plot(t1,1e4*y1(:,1));

2.3结果

3.四阶龙哥库塔

我们可以利用自己编写的四阶龙哥库塔来求解。

3.1理论知识

经典的四阶龙哥库塔公式如下:

\begin{cases}y_{n+1}=y_n+\frac{h}{6}(K_1+2K_2+2K_3+K_4)\\\\K_1=F(x_n,y_n)\\\\K_2=f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_1)\\\\K_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}K_2)\\\\K_4=F(x_n+h,y_n+hK_3)\end{cases}

其中K1,K2,K3,K4为不同函数值。

3.2代码

这是四阶龙哥库塔函数的代码

function [u1,u2,w1,w2] = RK4_2variable(u1,u2,w1,w2,h,a,b)x = a:h:b;for i = 1:length(x)-1k11 = f1(x(i) , u1(i) , u2(i) , w1(i) , w2(i));
k21 = f2(x(i) , u1(i) , u2(i) , w1(i) , w2(i));
L11 = f3(x(i) , u1(i) , u2(i) , w1(i) , w2(i));
L21 = f4(x(i) , u1(i) , u2(i) , w1(i) , w2(i));k12 = f1(x(i)+h/2 , u1(i)+h*k11/2 , u2(i)+h*k21/2 , w1(i)+h*L11/2, w2(i)+h*L21/2);
k22 = f2(x(i)+h/2 , u1(i)+h*k11/2 , u2(i)+h*k21/2 , w1(i)+h*L11/2, w2(i)+h*L21/2);
L12 = f3(x(i)+h/2 , u1(i)+h*k11/2 , u2(i)+h*k21/2 , w1(i)+h*L11/2, w2(i)+h*L21/2);
L22 = f4(x(i)+h/2 , u1(i)+h*k11/2 , u2(i)+h*k21/2 , w1(i)+h*L11/2, w2(i)+h*L21/2);k13 = f1(x(i)+h/2 , u1(i)+h*k12/2 , u2(i)+h*k22/2 , w1(i)+h*L12/2 , w2(i)+h*L22/2);
k23 = f2(x(i)+h/2 , u1(i)+h*k12/2 , u2(i)+h*k22/2 , w1(i)+h*L12/2 , w2(i)+h*L22/2);
L13 = f3(x(i)+h/2 , u1(i)+h*k12/2 , u2(i)+h*k22/2 , w1(i)+h*L12/2 , w2(i)+h*L22/2);
L23 = f4(x(i)+h/2 , u1(i)+h*k12/2 , u2(i)+h*k22/2 , w1(i)+h*L12/2 , w2(i)+h*L22/2);k14 = f1(x(i)+h , u1(i)+h*k13 , u2(i)+h*k23 , w1(i)+h*L13 , w2(i)+h*L23);
k24 = f2(x(i)+h , u1(i)+h*k13 , u2(i)+h*k23 , w1(i)+h*L13 , w2(i)+h*L23);
L14 = f3(x(i)+h , u1(i)+h*k13 , u2(i)+h*k23 , w1(i)+h*L13 , w2(i)+h*L23);
L24 = f4(x(i)+h , u1(i)+h*k13 , u2(i)+h*k23 , w1(i)+h*L13 , w2(i)+h*L23);u1(i+1) = u1(i) + h/6 * (k11 + 2*k12 + 2*k13 + k14);
u2(i+1) = u2(i) + h/6 * (k21 + 2*k22 + 2*k23 + k24);
w1(i+1) = w1(i) + h/6 * (L11 + 2*L12 + 2*L13 + L14);
w2(i+1) = w2(i) + h/6 * (L21 + 2*L22 + 2*L23 + L24);end
end

我们编写四个微分方程:

function output = f1(x,u1,u2,w1,w2)
output = u2;
end
function output = f2(x,u1,u2,w1,w2)
n=1.4;
l=0.1;
P_a=5e5;
R0=1e-4;
A=4e-7*l/R0;
B=7.061e-7*l/R0;
c=1e-5*P_a;
k=0.2;
output =(1.5*l^2*(l*w1*w2^2-u2^2)+2*l^3*(l*u2^2*w1-w2^2)-k*(l*w1^(1-3*n)-u1^(-3*n))+A*(l*w2-u2/u1))/(l^2*u1-l^4*u1^2*w1)+(2*B*(1-1/(l*u1))+(1+c)*(l*w1-1))/(l^2*u1-l^4*u1^2*w1);
end
function output = f3(x,u1,u2,w1,w2)
output = w2;
end
function output=f4(x,u1,u2,w1,w2)
n=1.4;
l=0.1;
P_a=5e5;
R0=1e-4;A=4e-7*l/R0;
B=7.061e-7*l/R0;
c=1e-5*P_a;
k=0.2;
output=(1.5*l^2*(l*u1*u2^2-w2^2)+2*l^3*(l*w2^2*u1-u2^2)-k*(l*u1^(1-3*n)-w1^(-3*n))+A*(l*u2-w2/w1))/(l^2*w1-l^4*w1^2*u1)+(2*B*(1-1/(l*w1))+(1+c)*(l*u1-1))/(l^2*w1-l^4*w1^2*u1);
end

最后利用自己所写的函数求解:

clc;clear;
u1(1) = 1;
u2(1) = 0;
w1(1) = 1;
w2(1) = 0;
h=0.0001;
a = 0;b=0.15;
[u1,u2,w1,w2] = RK4_2variable(u1,u2,w1,w2,h,a,b);
plot(a:h:b,u1,'b-');

3.3结果

这篇关于matlab实践(一):利用ode45和四阶龙哥库塔解二阶耦合微分方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557223

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1