pytorch(python)中遇到的问题(一)pow() 函数、python矩阵的切片,append()与expand(),tensor.expand()和tensor.expand_as()

本文主要是介绍pytorch(python)中遇到的问题(一)pow() 函数、python矩阵的切片,append()与expand(),tensor.expand()和tensor.expand_as(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1、pow() 函数
    • 2.python矩阵的切片(或截取)
    • 3.Python.append()与Python.expand()
    • 4.tensor.expand()和tensor.expand_as()和expand() .gt() .t()

1、pow() 函数

pow() 方法返回 xy(x的y次方) 的值。

  1. 语法
    以下是 math 模块 pow() 方法的语法:
import math
math.pow( x, y )

内置的 pow() 方法

pow(x, y[, z])函数是计算x的y次方,如果z在存在,则再对结果进行取模,其结果等效于pow(x,y) %z
参数
x -- 数值表达式。
y -- 数值表达式。
z -- 数值表达式。

注意:pow() 通过内置的方法直接调用,内置方法会把参数作为整型,而 math 模块则会把参数转换为 float。

import math   # 导入 math 模块
print "math.pow(100, 2) : ", math.pow(100, 2)
结果:math.pow(100, 2) :  10000.0
# 使用内置,查看输出结果区别
print "pow(100, 2) : ", pow(100, 2)结果:pow(100, 2) :  10000print "math.pow(100, -2) : ", math.pow(100, -2)
print "math.pow(2, 4) : ", math.pow(2, 4)
print "math.pow(3, 0) : ", math.pow(3, 0)
以上实例运行后输出结果为:
math.pow(100, -2) :  0.0001
math.pow(2, 4) :  16.0
math.pow(3, 0) :  1.0

说明
1 pow(x,y) 等价于 x**y:

4**2    # 结果为164**2.5  # 结果为32.0pow(x,y,z) 等价于 X**Y%Z:4**2.5%3  # 结果为2.0

2.pow(x,y,z) 当 z 这个参数不存在时 x,y 不限制是否为 float 类型, 而当使用第三个参数的时候要保证前两个参数只能为整数

 pow(11.2,3.2)
结果为:2277.7060352240815
pow(11.2,3.2,2)   # 结果报错
Traceback (most recent call last):File "<stdin>", line 1, in <module>
TypeError: pow() 3rd argument not allowed unless all arguments are integers

2.python矩阵的切片(或截取)

矩阵一般有行也有列,所以矩阵的截取也需要包含行和列两个参数。
  假设a是一个矩阵,a的截取就可写成:a[起始行:终止行,起始列:终止列],中括号中有一个逗号,逗号前的是为了分割行的,逗号后的是为了分割列的。例如:

a1=np.array([[1,2,3,4],[5,6,7,8],[11,12,13,14],[2,3,4,5]])
import numpy as np
a1=np.array([[1,2,3,4],[5,6,7,8],[11,12,13,14],[2,3,4,5]])
print('截取矩阵第二三行,第二、三列:\n',a1[1:3,1:3])结果为:
截取矩阵第二三行,第二、三列:[[ 6  7][12 13]]

如果只分割行,不分隔列,可写为:a[1:3],分割列的部分可以省略,代码如下:

print('截取矩阵第二三行:\n',a1[1:3])打印结果如下:
截取矩阵第二三行:[[ 5  6  7  8][11 12 13 14]]

如果只分割列,不分隔行,可写为:a[:,1:3],分割行的部分不可以省略,代码如下:

print('截取矩阵第二三列:\n',a1[:,1:3])打印结果如下:截取矩阵第二三列:[[ 2  3][ 6  7][12 13][ 3  4]]

如果只分割某一行,可写为: a [2] (截取第三行)

print('截取矩阵第三行:\n',a1[2])
打印结果:
截取矩阵第三行:[11 12 13 14]

如果分割某一列,可写为:a [:,2] (截取所有行的第三列)(逗号前边用于截取行的冒号不可省略),其结果是将所有行的第三个数拼接成一个列表

print('截取矩阵第三行:\n',a1[:,2]) 
打印结果:
截取矩阵所有行第三列:[ 3  7 13  4]

如果分割某行某列,可写为:a[2,2](截取第三行的第三列)

print('截取矩阵第三行第三列:\n',a1[2,2])
打印结果:
截取矩阵第三行第三列:

3.Python.append()与Python.expand()

a=[1,2]
print(a)
结果:[1, 2]
a.append([3,4])
print(a)
结果为:[1, 2, [3, 4]]
a.extend([3,4]) 
print(a)
结果为:[1, 2, 3, 4]

list.append(arg1) 参数类型任意,可以往已有列表中添加元素,若添加的是列表,就该列表被当成一个元素存在原列表中,只使list长度增加1.
list.extend(list1) 参数必须是列表类型,可以将参数中的列表合并到原列表的末尾,使原来的 list长度增加len(list1)。

4.tensor.expand()和tensor.expand_as()和expand() .gt() .t()

  1. tensor.expend()函数
 x = torch.Tensor([[1], [2], [3]])print "x.size():",x.size()y=x.expand( 3,4 )print "x.size():",x.size()print "y.size():",y.size()print xprint y

在这里插入图片描述
可以看出expand()函数括号里面为变形后的size大小,而且原来的tensor和tensor.expand()是不共享内存的

  1. tensor.expand_as()
    把一个tensor变成和函数括号内一样形状的tensor,用法与expand()类似
x = torch.tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[ 1,  1,  1,  1],[ 2,  2,  2,  2],[ 3,  3,  3,  3]])
>>> x.expand(-1, 4)   # -1 means not changing the size of that dimension
tensor([[ 1,  1,  1,  1],[ 2,  2,  2,  2],[ 3,  3,  3,  3]])
  1. expand() .gt() .t()
    .gt(a, b)
    比较前者张量是否大于后者

a = torch.Tensor([[1,2],[3,4]])
b = torch.Tensor([[1,2], [5,6]])
gt = torch.gt(a, b)
print(gt)

.t() 代表转置操作

参考:https://www.runoob.com/python/func-number-pow.html
https://www.cnblogs.com/jff1124/p/10623599.html
https://blog.csdn.net/sdd220/article/details/78315648
https://blog.csdn.net/u014386899/article/details/100767325

这篇关于pytorch(python)中遇到的问题(一)pow() 函数、python矩阵的切片,append()与expand(),tensor.expand()和tensor.expand_as()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/556806

相关文章

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监