Redis数据类型——SDS(简单动态字符串)

2023-12-31 16:38

本文主要是介绍Redis数据类型——SDS(简单动态字符串),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis并没有使用C语言传统的字符串,而是构建了一种名为简单动态字符串(Simple dynamic string,SDS),并作为默认字符串使用。

例如:执行如下命令

SET msg "hello world"

Redis数据库中将建立一个键值对,键是一个字符串对象,是一个负责保存"msg"的SDS,而值也是一个SDS,负责保存“hello world”。

  • 注意:SDS还被用于缓冲区,AOF缓冲区以及客户端的输入缓冲区都是SDS实现的

 

SDS的定义(未包含4.0新特性)

3.0特性

每个sds.h/sdshdr 都代表一个SDS值

struct sdshdr {

            int len;//记录SDS保存的数组的长度

            int free;//记录SDS中未使用的字节数量

            char buf[]; //字节数组,保存字符串

}

 

buf是一个char型数组,前五个字节保存了 R E D I S 五个字符,最后一个字节保存了空字符 \0;空字符并不算在len里面。额外分配 1 字节空间、把空字符自动加到数组末尾等操作都是SDS自动完成的,完全不用使用者来管理,对用户是完全透明的。

保留空字符的好处就是可以沿用C字符串函数库里的函数。可以直接使用print(“%s”,SDSname->buf);输出。

4.0新特性

#define SDS_TYPE_5  0
#define SDS_TYPE_8  1
#define SDS_TYPE_16 2
#define SDS_TYPE_32 3
#define SDS_TYPE_64 4
#define SDS_TYPE_MASK 7 //类型掩码
#define SDS_TYPE_BITS 3 
#define SDS_HDR_VAR(T,s) struct sdshdr##T *sh = (void*)((s)-(sizeof(struct sdshdr##T))); //获取header头指针,其中##是拼接的含义
#define SDS_HDR(T,s) ((struct sdshdr##T *)((s)-(sizeof(struct sdshdr##T)))) //获取header头指针
#define SDS_TYPE_5_LEN(f) ((f)>>SDS_TYPE_BITS) //获取sdshdr5的长度

 

struct __attribute__ ((__packed__)) sdshdr5 {   //5种header定义,节省内存使用
    uint8_t len; // 字符串实际长度
    uint8_t alloc; //字符串已拥有的内存空间容量  sdsalloc() = sdsavail() + sdslen()
    unsigned char flags;//表示类型,见宏定义
    char buf[];//buf[] : 字符串内容
};

 

static inline size_t sdslen(const sds s) {         //计算sds长度
    unsigned char flags = s[-1];
    switch(flags&SDS_TYPE_MASK) {
        case SDS_TYPE_5:
            return SDS_TYPE_5_LEN(flags);
        case SDS_TYPE_8:
            return SDS_HDR(8,s)->len;
        case SDS_TYPE_16:
            return SDS_HDR(16,s)->len;
        case SDS_TYPE_32:
            return SDS_HDR(32,s)->len;
        case SDS_TYPE_64:
            return SDS_HDR(64,s)->len;
    }
    return 0;
}

 

//计算sds可用空间
static inline size_t sdsavail(const sds s) {
    unsigned char flags = s[-1];
    switch(flags&SDS_TYPE_MASK) {
        case SDS_TYPE_5: {
            return 0;
        }
        case SDS_TYPE_8: {
            SDS_HDR_VAR(8,s);
            return sh->alloc - sh->len;
        }
        case SDS_TYPE_16: {
            SDS_HDR_VAR(16,s);
            return sh->alloc - sh->len;
        }
        case SDS_TYPE_32: {
            SDS_HDR_VAR(32,s);
            return sh->alloc - sh->len;
        }
        case SDS_TYPE_64: {
            SDS_HDR_VAR(64,s);
            return sh->alloc - sh->len;
        }
    }
    return 0;
}

 


//设置sds长度
static inline void sdssetlen(sds s, size_t newlen) {
    unsigned char flags = s[-1];
    switch(flags&SDS_TYPE_MASK) {
        case SDS_TYPE_5:
            {
                unsigned char *fp = ((unsigned char*)s)-1;
                *fp = SDS_TYPE_5 | (newlen << SDS_TYPE_BITS);
            }
            break;
        case SDS_TYPE_8:
            SDS_HDR(8,s)->len = newlen;
            break;
        case SDS_TYPE_16:
            SDS_HDR(16,s)->len = newlen;
            break;
        case SDS_TYPE_32:
            SDS_HDR(32,s)->len = newlen;
            break;
        case SDS_TYPE_64:
            SDS_HDR(64,s)->len = newlen;
            break;
    }
}

 

SDS与C字符串的区别

1、常数复杂度获取字符串长度

SDS获取字符串数组的时间复杂度是O(1),因为有len属性记录字符串的长度,而C语言需要遍历一遍才能获得字符串的长度,时间复杂度为O(N)。

2、杜绝缓冲区溢出

<string.h>/strcat 函数可以将src中的内容拼接到 dest 字符串末尾:

char *strcat(char *dest , char *src);

因为c不会记录字符串长度,使用strcat函数的时候,假设已经为 dest 分配了足够多的空间,可以容纳 src 但是,这一假设不成立的时候,就产生了内存溢出。

如图所示,内存中有两个字符串,分别为s1 s2,当执行语句;

strcat(s1 , " world");

但是,没有给s1分配足够多的空间,在执行完语句后会变成下图

这时,s2的内容被意外修改了,而与C语言策略不同,SDS进行修改前,会事先检查SDS的空间是否满足修改所需的要求,如不满足会自动扩展至所需空间。

3、减少修改字符时扩展内存的次数

拿C语言字符串来说,如果需要连续地使用 strcat 函数,为避免内存泄漏,需要连续地扩展空间,为了避免C语言这种缺陷,SDS实现了空间与分配和惰性空间释放两种优化策略

1、空间预分配

SDS大小分配策略
小于1MB分配的未使用空间 free = len ,例如:如果修改后的SDSlen长度为5,那么free分配的空间也是5  , 总空间就是 5 + 5 + 1 = 11(额外1字节给空字符)
大于等于1MB

分配的未使用空间为 1MB ,例如:如果修改后的SDSlen长度为5MB,那么free分配的空间就是 1MB  , 总空间就是 5MB + 1MB + 1byte(额外1字节给空字符)

 

这样就降低了内存重分配的次数,连续增长N次的重分配次数从必定N次降低为最多N次。

 

2、惰性空间释放

此策略用于优化字符串缩短操作,例如:sdstrim函数执行,对于字符串 s 。

 执行 sdstrim(s , "ab");   //删除字符串所有的ab

执行完后空余出4字节,SDS并没有立即释放,而是使用 free 记录空字符,避免将来的内存重分配。

当然,SDS也提供了释放未使用的空间的API,避免内存浪费。

 

4、二进制安全

C语言字符串不能保存包含 空字符串的字符串 ,否则会编译器会认为提前结束遍历,所以不能保存像图片音频等含空字符的文件,SDS保存在buf里的字符串都是二进制安全的,程序不会对其中的数据做任何限制和过滤。

SDS之所以能检测是否结束,是利用 len 属性而不是利用空字符。

5、兼容部分C字符串函数

即使SDS是二进制安全的,但是还保留了以空字符为结尾的惯例,这样就可以继续使用C语言库函数了。避免了重写代码的麻烦。

 

这篇关于Redis数据类型——SDS(简单动态字符串)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/556594

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片