【AIGC-图片生成视频系列-2】八仙过海,各显神通:AI生成视频相关汇总剖析

本文主要是介绍【AIGC-图片生成视频系列-2】八仙过海,各显神通:AI生成视频相关汇总剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近「图片生成视频系列」层出不穷,我拜读并结合实践(对,就是手撕代码,有开源就撕),并对以下几篇文章的相似点以及关键点稍微做个总结:

一. 生成视频中图像的一致性

在图像生成视频的这个过程中,维持生成视频中图像的一致性是个很大的挑战,毕竟我们都不是很能接受,随着视频播放,画风逐渐不对劲。。。

因此,“八仙过海,各显神通”。

1.1 LivePhoto通过引入Reference latent, 并与输入Unet的噪声在通道维度cat操作,同时利用Content Encoder 把输入图片信息注入到Unet网络的每一层(down block, mid block, up block)中,利用‘双保险’来维持生成视频中图像的一致性。

LivePhoto: Real Image Animation with Text-guided Motion Control

1.2 DreaMoving利用Content Guider把人脸信息注入到Unet网络的每一层(down block, mid block, up block)中。其实这里Content Guider的作用与之前腾讯的工作IPAdapter 有点类似,利用IPAdapter的保持“概念”一致的能力来稳住生成视频中图像的一致性。

DreaMoving: A Human Dance Video Generation Framework based on Diffusion Models

1.3 MagicAnimate提出一个Appearance Encoder来专门保留人物的ID 信息,并把相关信息注入到Unet网络的(mid block 和up block)层,以此保证生成视频中人物ID一致性。

MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model

1.4 Animate Anyone 的做法和MagicAnimate类似, 也是专门训练了一个ReferenceNet, 用来维持Reference Image的人物形象的。

和MagicAnimate不同的是,这里ReferenceNet的Spatial-Attention层和Cross-Attention是逐层注入到对应的Unet网络所有层,包括(down block, mid block, up block)层。

Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character

二. 生成视频中的运动控制注入

2.1 LivePhoto 把视频中的运动划分为10级,在训练的时候,把运动对应的map与输入噪声latent作cat操作,一起送入Unet网络去噪。待训练完成,在推理阶段就可以通过输入运动的强度来控制生成视频中人物的运动幅度大小。

2.2 DreaMoving 则是专门训练了一个Video ControlNet, 注入控制信息到Unet网络的(mid block 和up block )中。这里的控制信息可以在姿态图(比如openpose或者DW pose),也可以是深度图。

2.3 MagicAnimate 和DreaMoving 类似,也是利用自己训练的Video ControlNet来控制人物的运动,不同的是,MagicAnimate 只能利用Densepose sequence来作为控制条件。不知为啥,MagicAnimate 这么独特,控制方式与众不同。

2.4 Animate Anyone 和DreaMoving 以及MagicAnimate 又有所不同,虽然也是利用姿态来作为控制条件,但并不是类似文本注入的方式直接注入到Unet网络结构中,而是与噪声一起作为输入进入到Unet网络中。


欢迎加入AI杰克王的免费知识星球,海量干货等着你,一起探讨学习AIGC!

移步公众号 「AI杰克王」,更多干货

喜欢的话就点个【赞】呗,您的鼓励和认可是我继续创作的动力。

喜欢就点个赞呗,您的鼓励和认可是我继续创作的动力。

这篇关于【AIGC-图片生成视频系列-2】八仙过海,各显神通:AI生成视频相关汇总剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554442

相关文章

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O