信息熵与经验熵:详解弱典型集

2023-12-30 22:44
文章标签 详解 经验 典型 信息熵

本文主要是介绍信息熵与经验熵:详解弱典型集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一. 弱典型集

1.1 基本介绍

1.2 补充弱大数定律

1.3 渐进等分性(AEP)

二. 联合弱典型集

2.1 基本介绍

2.2 联合渐近等分性

2.3互信息相关

三. 与物理层安全的关系

结论


一. 弱典型集

1.1 基本介绍

我们说一个序列很“典型”,通常指的是这个序列能反映总体分布的一些性质。如果一个序列的经验熵(empirical entropy)与随机变量的香农熵非常接近,我们就说这个序列属于弱典型集(weakly typical set)。

接下来我们将以离散型随机变量进行举例子,你可以直接推广到连续型随机变量。不要忘记离散型对应的熵的叫香农熵H,连续型的随机变量对应的熵叫微分熵h.

假定P(X)为某概率分布,\epsilon>0为一个很小的值,一个n长的序列满足如下的条件,就可以被称之为弱典型序列:

|-\frac{1}{n}logP(x^n)-H(X)|\leq \epsilon

其中,-\frac{1}{n}logP(x^n)就可以看成这个序列的经验熵,H(X)为变量真实的香农熵,两者相差不大则称之为弱典型序列。如果将所有的弱典型序列都放在同一个集合中,则形成弱典型集,写做\mathcal{A}_\epsilon^n(X).

引入弱大数定律(weak law of large numbers),可形成信息论安全中很有意思的一个性质叫渐进等分性。

1.2 补充弱大数定律

弱大数定律最早由伯努利发现。当抛硬币次数越多, “正面朝上”的频率越稳定的时候, 某种规律呼之欲出。历史上第一个证明这个规律的人是伯努利。他在《推测术》中以“缶中抽球”的例子来证明的。当然, 抛硬币与缶中抽球本质上是一致的, 为了更加直观,我们还是以抛硬币进行举例。
记 N 次抛硬币中, 事件 A“正面朝上”的次数为X。伯努利企图证明的是:用 \frac{X}{N}估计 p 可以达到事实上的确定性———他称为“道德确定性”( moral certainty) 。其含义很明显, 即用估计 p, 犯错误的概率不超过另外一个极小正数 σ。

这个理论看起来简单,我们尝试把它总结为一个数学定理:

就是现今常见的弱大数定律的表达形式了。
 

1.3 渐进等分性(AEP)

弱大数定律告诉我们,当取的序列长度n足够长时,其频率值是接近概率值的。换句话说,也就是当n足够大时,序列极大可能是属于弱典型集的,如下:

P[X^n\in \mathcal{A}_\epsilon^n(X)]>1-\epsilon

我们知道信息熵是衡量随机变量的不确定程度的,也就是概率值与熵是互相对应的,那么当一个序列属于弱典型集时x^n\in \mathcal{A}_\epsilon^n(X)时,其概率可以根据熵近似计算:

P(x^n)\approx 2^{-nH(X)}

如果你对信息论安全中的渐进性质有过了解的话,这个概率更准确的表达如下:

2^{-n(H(X)+\epsilon)}\leq P(x^n)\leq 2^{-n(H(X)-\epsilon)}

把所有这些弱典型序列集合放在一起,其数量也可以近似计算:

\mathcal{A}_\epsilon^n(X)\approx 2^{nH(X)}

这个数量更准确的表达如下:

(1-\epsilon)2^{n(H(X)-\epsilon)}\leq |\mathcal{A}_\epsilon^n(X)|\leq 2^{n(H(X)+\epsilon)}

二. 联合弱典型集

2.1 基本介绍

P_{XY}代表联合概率,如果X符合弱典型集,Y符合弱典型集,(X,Y)符合联合熵的性质,则说明(X,Y)属于联合弱典型集。这个过程,有三个条件需要满足:

以上式子中出现了联合熵,可以快速回顾下:

H(XY)=-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}P(x,y)logP(x,y)

总结以上,联合弱典型集表示为\mathcal{A}_\epsilon^n(XY)

2.2 联合渐近等分性

首先,抽取一个序列,它属于弱联合典型集的概率很大,如下:

P[(X^n,Y^n)\in \mathcal{A}_\epsilon^n(XY)]>1-\epsilon

在弱联合典型集中抽取一个联合序列(x^n,y^n)\in \mathcal{A}_\epsilon^n(XY),该联合序列的概率可根据联合熵计算:

2^{-n(H(XY)+\epsilon)}\leq P(x^n,y^n)\leq 2^{-n(H(XY)-\epsilon)}

当序列的长度足够长时,弱联合典型集的基数可计算:

(1-\epsilon)2^{n(H(XY)-\epsilon)}\leq |\mathcal{A}_\epsilon^n(XY)|\leq 2^{n(H(XY)+\epsilon)}

2.3互信息相关

物理层安全中有一个概念,叫互信息,如下:

I(X;Y)=H(X)-H(X|Y)

把H(X)看成一个圈,H(Y)看成一个圈,互信息很像交集的理解。

我们知道联合概率P(x,y)与单个的概率之间是有关系的。假如我分成两步,首先从P_X抽取一个随机序列\tilde X^n,接着首先从P_Y抽取一个随机序列\tilde Y^n,如果不考虑联合分布的话,这样抽取出的序列符合联合弱典型集的概率可以用互信息的角度来衡量,如下:

三. 与物理层安全的关系

ALICE和BOB先互发导频信号,并据此进行信道估计,从而获取L bits的信道信息序列,EVE在此
过程中实施被动窃听。假设ALICE和BOB之间的信道为h_{AB}h_{BA},而ALICE,BOB和EVE之 间 信 道 为h_{AE}h_{BE},通过信道估计得到的是他们的近似值。如下图:

ALICE在t时刻广播发送导频序列,BOB和 EVE通过信道估计得到各自的信道。随后BOB广播发送导频序列,ALICE和和 EVE通过信道估计得到各自的信道。现有的研究结果表明:

(1)合法通信的有效性

通信双方的信道具有短时互易性

(2)安全性

当 EVE与ALICE及BOB的间距超过信号波长的一半时,就可以认为窃听信道与合法通信信道间不相关,而这种情况通常在无线通信中也是普遍存在的,所以EVE估计的信道信息与ALICE及BOB均
不相关。

假设信道慢变的情形,则通过信道估计可以根据导频信号中多个符号得到同一信道特征的不同估计值。鉴于ALICE和BOB估计出的信道具有很高的相关性,可以看作是根据一组独立同分布随机变量产生的序列,不一致位看作是引起的扰动。

根据以上讨论的典型集理论,可得:

结论

随着序列长度L的增大,提取序列为典型序列的概率趋近于1。

证明:

序列的型是字符集中每个字符出现次数的比例,典型集理论相当于集合中的大数定理,当序列中的随机变量服从相同的分布,随着序列长度增大,序列中出现次数比例与随机变量分布越来越接近,所提取序列越接近典型序列。

首先,利用通信双方信道互易性和唯一性的特点,通过估计信道并量化信道响应提取出高度相关但并不完全一致的信道特征序列,然后基于信息论安全和信道编码理论可完成物理层安全通信,借助双方信道特征序列中蕴含的私密共享信息量优势,使合法通信方正确编解码,而第三方只能靠猜测消息码字实施攻击,从而建立不需要密码算法的物理层安全框架。利用典型集理论和窃听信道模型实现了安全性分析,当码本长度趋于无穷大时,攻击性能上下界趋于一致,从而证明了这种方法的可行性。

这篇关于信息熵与经验熵:详解弱典型集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554221

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数