【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML }

2023-12-29 20:32

本文主要是介绍【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML },希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关文章:

【一】最新多智能体强化学习方法【总结】

【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML }

【三】多智能体强化学习(MARL)近年研究概览 {Analysis of emergent behaviors(行为分析)_、Learning communication(通信学习)}

【四】多智能体强化学习(MARL)近年研究概览 {Learning cooperation(协作学习)、Agents modeling agents(智能体建模)}

1.中国计算机学会(CCF)推荐国际学术会议和期刊目录

CCF官方网站

CCF推荐国际学术会议(参考链接:链接点击查阅具体分类)

类别如下计算机系统与高性能计算,计算机网络,网络与信息安全,软件工程,系统软件与程序设计语言,数据库、数据挖掘与内容检索,计算机科学理论,计算机图形学与多媒体,人工智能与模式识别,人机交互与普适计算,前沿、交叉与综合

2021 ICML 多智能体强化学习论文整理汇总

类别名称数量
投稿量5513​
接收量1184
强化学习方向文章163
其中多智能体强化学习文章15

ICML地位:

1.1 中国计算机学会推荐国际学术会议
(人工智能与模式识别)

1.1.1 A类

序号

会议简称

会议全称

出版社

网址

1

AAAI

AAAI Conference on Artificial Intelligence

AAAI

http://www.aaai.org

2

CVPR

IEEE Conference on Computer Vision and 
Pattern Recognition

IEEE

http://www.pamitc.org/cvpr13/

3

ICCV

International Conference on Computer
Vision

IEEE

http://www.iccv2013.org/

4

ICML

International Conference on Machine 
Learning

ACM

http://icml.cc/2013/

5

IJCAI

International Joint Conference on Artificial
Intelligence

Morgan Kaufmann

http://www.ijcai.org

1.1.2 B类

序号

会议简称

会议全称

出版社

网址

1

COLT

Annual Conference on Computational
Learning Theory

Springer

http://orfe.princeton.edu/conferences/colt2013/

2

NIPS

Annual Conference on Neural Information
Processing Systems

MIT Press

http://www.nips.cc

1.1.3 B、C类更多见附录

2.推荐深度强化学习实验室及链接

2.1 arXiv

arXiv是一个免费的分发服务和开放存取的档案,收录了物理、数学、计算机科学、定量生物学、定量金融、统计学、电气工程和系统科学以及经济学等领域的1,917,177篇学术文章。本网站上的材料没有经过arXiv的同行评审。

链接:https://arxiv.org/

 2.2 深度强化学习实验室

DeepRL——github:https://github.com/neurondance

微信公众号:Deep-RL

官网:http://www.neurondance.com/

论坛http://deeprl.neurondance.com/

2.3 AI 会议Deadlines

: https://aideadlin.es

2.4 ICML官网:

https://icml.cc/

3.最新多智能体强化学习方向论文

3.1 ICML  International Conference on Machine Learning

[1]. Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning

作者: Shariq Iqbal (University of Southern California) · Christian Schroeder (University of Oxford) · Bei Peng (University of Oxford) · Wendelin Boehmer (Delft University of Technology) · Shimon Whiteson (University of Oxford) · Fei Sha (Google Research)

[2]. UneVEn: Universal Value Exploration for Multi-Agent Reinforcement Learning

作者: Tarun Gupta (University of Oxford) · Anuj Mahajan (Dept. of Computer Science, University of Oxford) · Bei Peng (University of Oxford) · Wendelin Boehmer (Delft University of Technology) · Shimon Whiteson (University of Oxford)

[3]. Emergent Social Learning via Multi-agent Reinforcement Learning

作者: Kamal Ndousse (OpenAI) · Douglas Eck (Google Brain) · Sergey Levine (UC Berkeley) · Natasha Jaques (Google Brain, UC Berkeley)

[4]. DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

作者: Wei-Fang Sun (National Tsing Hua University) · Cheng-Kuang Lee (NVIDIA Corporation) · Chun-Yi Lee (National Tsing Hua University)

[5]. Cooperative Exploration for Multi-Agent Deep Reinforcement Learning

作者: Iou-Jen Liu (University of Illinois at Urbana-Champaign) · Unnat Jain (UIUC) · Raymond Yeh (University of Illinois at Urbana–Champaign) · Alexander Schwing (UIUC)

[6]. Large-Scale Multi-Agent Deep FBSDEs

作者: Tianrong Chen (Georgia Institute of Technology) · Ziyi Wang (Georgia Institute of Technology) · Ioannis Exarchos (Stanford University) · Evangelos Theodorou (Georgia Tech)

[7]. Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning

作者: Anuj Mahajan (Dept. of Computer Science, University of Oxford) · Mikayel Samvelyan (University College London) · Lei Mao (NVIDIA) · Viktor Makoviychuk (NVIDIA) · Animesh Garg (University of Toronto, Vector Institute, Nvidia) · Jean Kossaifi (NVIDIA) · Shimon Whiteson (University of Oxford) · Yuke Zhu (University of Texas - Austin) · Anima Anandkumar (Caltech and NVIDIA)

[8]. Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

作者: Filippos Christianos (University of Edinburgh) · Georgios Papoudakis (The University of Edinburgh) · Muhammad Arrasy Rahman (The University of Edinburgh) · Stefano Albrecht (University of Edinburgh)

[9]. Parallel Droplet Control in MEDA Biochips using Multi-Agent Reinforcement Learning

作者: Tung-Che Liang (Duke University) · Jin Zhou (Duke University) · Yun-Sheng Chan (National Chiao Tung University) · Tsung-Yi Ho (National Tsing Hua University) · Krishnendu Chakrabarty (Duke University) · Cy Lee (National Chiao Tung University)

[10]. A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning

作者: Dong Ki Kim (MIT) · Miao Liu (IBM) · Matthew Riemer (IBM Research) · Chuangchuang Sun (MIT) · Marwa Abdulhai (MIT) · Golnaz Habibi (MIT) · Sebastian Lopez-Cot (MIT) · Gerald Tesauro (IBM Research) · Jonathan How (MIT)

[11]. Scalable Evaluation of Multi-Agent Reinforcement Learning with Melting Pot

作者: Joel Z Leibo (DeepMind) · Edgar Duenez-Guzman (DeepMind) · Alexander Vezhnevets (DeepMind) · John Agapiou (DeepMind) · Peter Sunehag () · Raphael Koster (DeepMind) · Jayd Matyas (DeepMind) · Charles Beattie (DeepMind Technologies Limited) · Igor Mordatch (Google Brain) · Thore Graepel (DeepMind)

[12]. Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

作者: Luke Marris (DeepMind) · Paul Muller (DeepMind) · Marc Lanctot (DeepMind) · Karl Tuyls (DeepMind) · Thore Graepel (DeepMind)

[13]. Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition

作者: Bo Liu (University of Texas, Austin) · Qiang Liu (UT Austin) · Peter Stone (University of Texas at Austin) · Animesh Garg (University of Toronto, Vector Institute, Nvidia) · Yuke Zhu (University of Texas - Austin) · Anima Anandkumar (California Institute of Technology)

[14]. Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning

作者: Matthieu Zimmer (Shanghai Jiao Tong University) · Claire Glanois (Shanghai Jiao Tong University) · Umer Siddique (Shanghai Jiao Tong University) · Paul Weng (Shanghai Jiao Tong University)

[15]. FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning

作者: Tianhao Zhang (Peking University) · yueheng li (Peking university) · Chen Wang (Peking University) · Zongqing Lu (Peking University) · Guangming Xie (1. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University; 2. Institute of Ocean Research, Peking University)

3.2 AAAI Conference on Artificial Intelligence

会议时间节点

  • August 15 – August 30, 2020: Authors register on the AAAI web site
  • September 1, 2020: Electronic abstracts due at 11:59 PM UTC-12 (anywhere on earth)
  • September 9, 2020: Electronic papers due at 11:59 PM UTC-12 (anywhere on earth)
  • September 29, 2020: Abstracts AND full papers due for revisions of rejected NeurIPS/EMNLP submissions by 11:59 PM UTC-12 (anywhere on earth)
  • AAAI-21 Reviewing Process: Two-Phase Reviewing and NeurIPS/EMNLP Fast Track Submissions
  • November 3-5, 2020: Author Feedback Window (anywhere on earth)
  • December 1, 2020: Notification of acceptance or rejection

具体论文见链接:http://deeprl.neurondance.com/d/191-82aaai2021

接收论文列表(共84篇)

4.附录

4.1 B类

序号

会议简称

会议全称

出版社

网址

1

COLT

Annual Conference on Computational
Learning Theory

Springer

http://orfe.princeton.edu/conferences/colt2013/

2

NIPS

Annual Conference on Neural Information
Processing Systems

MIT Press

http://www.nips.cc

3

ACL

Annual Meeting of the Association for 
Computational Linguistics

ACL

http://acl2013.org/site/index.html

4

EMNLP

Conference on Empirical Methods in Natural
Language Processing

ACL

http://www.sigdat.org/

5

ECAI

European Conference on Artificial 
Intelligence

IOS Press

http://www.ecai2013.upit.ro/?i=2542

6

ECCV

European Conference on Computer Vision

Springer

http://eccv2012.unifi.it/

7

ICRA

IEEE International Conference on Robotics
and Automation

IEEE

http://www.icra2013.org/

8

ICAPS

International Conference on Automated
Planning and Scheduling

AAAI

http://www.icaps-conference.org/

9

ICCBR

International Conference on Case-Based
Reasoning

Springer

http://www.iccbr.org/

10

COLING

International Conference on Computational
Linguistics

ACM

 http://www.coling2012-iitb.org/

11

KR

International Conference on Principles of
Knowledge Representation and Reasoning

Morgan Kaufmann

http://www.kr.org/

12

UAI

International Conference on Uncertainty
in Artificial Intelligence

AUAI

http://auai.org/

13

AAMAS

International Joint Conference
on Autonomous Agents and Multi-agent
Systems

Springer

http://www.aamas-conference.org/

4.2 C类

序号

会议简称

会议全称

出版社

网址

1

ACCV

Asian Conference on Computer Vision

Springer

http://www.accv2012.org/

2

CoNLL

Conference on Natural Language Learning

CoNLL

http://www.clips.ua.ac.be/conll/

3

GECCO

Genetic and Evolutionary Computation
Conference

ACM

http://www.sigevo.org/gecco-2013/

4

ICTAI

IEEE International Conference on Tools with
Artificial Intelligence

IEEE

http://ictai12.unipi.gr/

5

ALT

International Conference on Algorithmic
Learning Theory

Springer

http://www-alg.ist.hokudai.ac.jp/~thomas/ALT13/

6

ICANN

International Conference on Artificial Neural
Networks

Springer

https://www.waset.org/conferences/2013/
amsterdam/icann/

7

FGR

International Conference on Automatic Face
and Gesture Recognition

IEEE

http://fg2013.cse.sc.edu/

8

ICDAR

International Conference on Document
Analysis and Recognition

IEEE

http://www.icdar2013.org/

9

ILP

International Conference on Inductive Logic
Programming

Springer

http://ilp13.cos.ufrj.br/

10

KSEM

International conference on Knowledge
Science,Engineering and Management

Springer

http://ksem.dlut.edu.cn/

11

ICONIP

International Conference on Neural 
Information Processing

Springer

http://iconip2013.org/

12

ICPR

International Conference on Pattern 
Recognition

IEEE

http://www.icpr2014.org/

13

ICB

International Joint Conference on Biometrics

IEEE

http://atvs.ii.uam.es/icb2013/

14

IJCNN

International Joint Conference on Neural
Networks

IEEE

http://www.ijcnn2013.org/

15

PRICAI

Pacific Rim International Conference on 
Artificial Intelligence

Springer

http://ktw.mimos.my/pricai2012/

16

NAACL

The Annual Conference of the North
American Chapter of the Association 
for Computational Linguistics

NAACL

http://naacl2013.naacl.org/

17

BMVC

British Machine Vision Conference

British Machine
Vision 
Association

http://bmvc2013.bristol.ac.uk/

这篇关于【二】最新多智能体强化学习文章如何查阅{顶会:AAAI、 ICML }的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550638

相关文章

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录