电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场

本文主要是介绍电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场

  • 论文
  • 介绍
  • 概率无向图模型
    • 图模型
    • 马尔科夫性
      • 成对马尔科夫性
      • 局部马尔科夫性
      • 全局马尔科夫性
    • 概率无向图的定义
    • 概率无向图模型的因子分解
      • 团与最大团
        • 定义
        • 例子
      • 因子分解
  • 条件随机场
    • 条件随机场的定义
    • 线性链条件随机场
    • 条件随机场的形式
      • 参数化形式
        • 例子
      • 简化形式
      • 矩阵形式
        • 例子
  • 条件随机场的概率计算
    • 向前-向后算法
    • 概率计算
    • 期望计算
    • 预测算法
      • 步骤
      • 例子
  • 条件随机场的参数估计
    • 改进的迭代尺度法
      • 步骤
      • 算法S
      • 算法T
    • 拟牛顿法
      • 步骤
  • 本章概要
  • 备注
  • 相关视频
  • 相关的笔记

论文

CRF算法:《Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data》

介绍

电信保温杯笔记——《统计学习方法(第二版)——李航》
本文是对原书的精读,会有大量原书的截图,同时对书上不详尽的地方进行细致解读与改写。

条件随机场(conditional random field)是给定一组输入随机变量 X X X 条件下另一组输出随机变量 Y Y Y 的条件概率分布模型 P ( Y ∣ X ) P(Y|X) P(YX),其特点是假设输出随机变量 Y Y Y 构成马尔可夫随机场。

在这里插入图片描述

马尔可夫随机场又称为概率无向图模型。故下面介绍概率无向图模型。

概率无向图模型

首先介绍图模型。

图模型

在这里插入图片描述

具有马尔科夫性的无向图,就是概率无向图,下面介绍马尔科夫性。

马尔科夫性

在这里插入图片描述

成对马尔科夫性

在这里插入图片描述

局部马尔科夫性

在这里插入图片描述

全局马尔科夫性

在这里插入图片描述

概率无向图的定义

在这里插入图片描述

概率无向图模型的因子分解

在这里插入图片描述

首先给出无向图中的团与最大团的定义。

团与最大团

定义

在这里插入图片描述

例子

在这里插入图片描述

因子分解

在这里插入图片描述

总结为如下定理
在这里插入图片描述

了解了马尔可夫随机场后,下面介绍条件随机场。条件随机场(conditional random field)是给定随机变量 X X X 条件下,随机变量 Y Y Y 的马尔可夫随机场。

条件随机场

在这里插入图片描述

条件随机场的定义

在这里插入图片描述

它想说的是, v v v 点状态的预测,只与跟它连接的节点的状态有关,与跟它没有连接的节点的状态无关,而隐马尔可夫模型的假设 v v v 点状态的预测只与它的前一个节点的状态有关,这是两者的不同之处。
在这里插入图片描述

线性链条件随机场

在这里插入图片描述

它跟条件随机场的定义一致,只不过节点的结构变成了链表,故与条件随机场的定义中的节点 v v v 相连的节点只有前后2个。

条件随机场的形式

下面是条件随机场 P ( Y ∣ X ) P(Y|X) P(YX) 公式化的各种表达形式。

参数化形式

就是条件概率写成 P ( Y ∣ X ) P(Y|X) P(YX) 具体公式。
在这里插入图片描述

其中 y = ( y 1 , y 2 , ⋯ , y n ) y = (y_1, y_2, \cdots , y_n) y=(y1,y2,,yn)
在这里插入图片描述

例子

在这里插入图片描述

例子中 P ( y ∣ x ) = exp ⁡ [ ∑ i = 1 n + 1 ( ∑ k = 1 5 λ k t k ( y i − 1 , y i , x , i ) + ∑ k = 1 4 μ k s k ( y i , x , i ) ) ] P(y | x) = \exp \left[ \sum\limits_{i = 1}^{n+1} \left( \sum\limits_{k = 1}^{5} \lambda_k t_k(y_{i-1} , y_i , x , i ) + \sum\limits_{k = 1}^{4} \mu_k s_k(y_i , x , i ) \right) \right] P(yx)=exp[i=1n+1(k=15λktk(yi1,yi,x,i)+k=14μksk(yi,x,i))] 才与下文矩阵形式书写一致。

简化形式

下面就是把上面公式exp里面的内容进行合并简化。
在这里插入图片描述
在这里插入图片描述

矩阵形式

在这里插入图片描述

上式方括号是矩阵元素的表达式,即 A = [ a i j ] A = [a_{ij}] A=[aij]
y i y_i yi 共有 m m m 个状态取值, i = 1 , ⋯ , n i = 1,\cdots , n i=1,,n,所以矩阵是 m m m 阶的。因为 y 0 y_0 y0 y n + 1 y_{n+1} yn+1 只有一种取值,而矩阵 M 1 , M n + 1 M_1,M_{n+1} M1,Mn+1 又希望保持矩阵形式,故 M 1 M_1 M1 除第一行以外都是0, M n + 1 M_{n+1} Mn+1 除第一列以外都是0。
在这里插入图片描述

矩阵 [ M 1 ( x ) M 2 ( x ) ⋯ M n + 1 ( x ) ] [M_1(x)M_2(x) \cdots M_{n+1}(x)] [M1(x)M2(x)Mn+1(x)] 只有左上角元素不为零。

例子

在这里插入图片描述

以上是模型的介绍,下面是模型的运用与参数估计方法。

条件随机场的概率计算

在这里插入图片描述

向前-向后算法

电信保温杯笔记——《统计学习方法(第二版)——李航》第10章 隐马尔可夫模型中有向前算法和向后算法的笔记。

在这里插入图片描述

概率计算

在这里插入图片描述

期望计算

在这里插入图片描述

预测算法

在这里插入图片描述

电信保温杯笔记——《统计学习方法(第二版)——李航》第10章 隐马尔可夫模型中有维特比算法的笔记。

在这里插入图片描述

在这里插入图片描述

步骤

在这里插入图片描述

例子

在这里插入图片描述

条件随机场的参数估计

在这里插入图片描述

改进的迭代尺度法

电信保温杯笔记——《统计学习方法(第二版)——李航》第6章 逻辑斯谛回归与最大熵模型中有关于改进的迭代尺度法的笔记。

这是一种对数似然函数的参数估计的解法。
在这里插入图片描述
在这里插入图片描述

步骤

在这里插入图片描述

算法S

在这里插入图片描述

算法T

在这里插入图片描述

拟牛顿法

在这里插入图片描述

步骤

在这里插入图片描述

本章概要

在这里插入图片描述

备注

求解的算法没有细看,但用的都是前几章的算法。

相关视频

相关的笔记

hktxt /Learn-Statistical-Learning-Method

这篇关于电信保温杯笔记——《统计学习方法(第二版)——李航》第11章 条件随机场的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550382

相关文章

Java中的getBytes()方法使用详解

《Java中的getBytes()方法使用详解》:本文主要介绍Java中getBytes()方法使用的相关资料,getBytes()方法有多个重载形式,可以根据需要指定字符集来进行转换,文中通过代... 目录前言一、常见重载形式二、示例代码三、getBytes(Charset charset)和getByt

nginx负载均衡及详细配置方法

《nginx负载均衡及详细配置方法》Nginx作为一种高效的Web服务器和反向代理服务器,广泛应用于网站的负载均衡中,:本文主要介绍nginx负载均衡及详细配置,需要的朋友可以参考下... 目录一、 nginx负载均衡策略1.1 基本负载均衡策略1.2 第三方策略1.3 策略对比二、 nginx配置2.1

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义