【Scikit-Learn 中文文档】21 聚类 - 无监督学习 - 用户指南 | ApacheCN

2023-12-29 16:50

本文主要是介绍【Scikit-Learn 中文文档】21 聚类 - 无监督学习 - 用户指南 | ApacheCN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文文档: http://sklearn.apachecn.org/cn/stable/modules/clustering.html

英文文档: http://sklearn.apachecn.org/en/stable/modules/clustering.html

官方文档: http://scikit-learn.org/stable/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html


2.3. 聚类

未标记的数据的 Clustering(聚类) 可以使用模块 sklearn.cluster 来实现。

每个 clustering algorithm (聚类算法)有两个变体: 一个是 class, 它实现了 fit 方法来学习 train data(训练数据)的 clusters(聚类),还有一个 function(函数),是给定 train data(训练数据),返回与不同 clusters(聚类)对应的整数标签 array(数组)。对于 class(类),training data(训练数据)上的标签可以在 labels_ 属性中找到。

输入数据

需要注意的一点是,该模块中实现的算法可以采用不同种类的 matrix (矩阵)作为输入。所有这些都接受 shape [n_samples, n_features] 的标准数据矩阵。 这些可以从以下的 sklearn.feature_extraction 模块的 classes (类)中获得。对于 AffinityPropagationSpectralClustering 和 DBSCAN 也可以输入 shape [n_samples, n_samples]的相似矩阵。这些可以从 sklearn.metrics.pairwise 模块中的函数获得。

2.3.1. 聚类方法概述

KMeans 算法通过试图分离 n groups of equal variance(n 个相等方差组)的样本来聚集数据,minimizing (最小化)称为 inertia 或者 within-cluster sum-of-squares (簇内和平方)的 criterion (标准)。 该算法需要指定 number of clusters (簇的数量)。它可以很好地 scales (扩展)到 large number of samples(大量样本),并已经被广泛应用于许多不同领域的应用领域。

k-means 算法将一组 N 样本 X 划分成 K 不相交的 clusters (簇) C, 每个都用 cluster (该簇)中的样本的均值 \mu_j 描述。 这个 means (均值)通常被称为 cluster(簇)的 “centroids(质心)”; 注意,它们一般不是从 X 中挑选出的点,虽然它们是处在同一个 space(空间)。 K-means(K-均值)算法旨在选择最小化 inertia(惯性) 或 within-cluster sum of squared(簇内和的平方和)的标准的 centroids(质心):

\sum_{i=0}^{n}\min_{\mu_j \in C}(||x_j - \mu_i||^2)

Inertia(惯性), 或 the within-cluster sum of squares(簇内和平方差) criterion(标准),可以被认为是 internally coherent clusters (内部想干聚类)的 measure (度量)。 它有各种缺点:

  • Inertia(惯性)假设 clusters (簇)是 convex(凸)的和 isotropic (各项同性),这并不是总是这样。它对 elongated clusters (细长的簇)或具有不规则形状的 manifolds 反应不佳。
  • Inertia(惯性)不是一个 normalized metric(归一化度量): 我们只知道 lower values (较低的值)是更好的,并且 零 是最优的。但是在 very high-dimensional spaces (非常高维的空间)中,欧几里得距离往往会变得 inflated (膨胀)(这就是所谓的 “curse of dimensionality (维度诅咒/维度惩罚)”)。在 k-means 聚类之前运行诸如 PCA 之类的 dimensionality reduction algorithm (降维算法)可以减轻这个问题并加快计算速度。
../_images/sphx_glr_plot_kmeans_assumptions_0011.png

K-means 通常被称为 Lloyd’s algorithm(劳埃德算法)。在基本术语中,算法有三个步骤。、 第一步是选择 initial centroids (初始质心),最基本的方法是从 X 数据集中选择 k 个样本。初始化完成后,K-means 由两个其他步骤之间的循环组成。 第一步将每个样本分配到其 nearest centroid (最近的质心)。第二步通过取分配给每个先前质心的所有样本的平均值来创建新的质心。计算旧的和新的质心之间的差异,并且算法重复这些最后的两个步骤,直到该值小于阈值。换句话说,算法重复这个步骤,直到质心不再显著移动。

../_images/sphx_glr_plot_kmeans_digits_0011.png

K-means 相当于具有 small, all-equal, diagonal covariance matrix (小的全对称协方差矩阵)的 expectation-maximization algorithm (期望最大化算法)。

该算法也可以通过 `Voronoi diagrams(Voronoi图)<https://en.wikipedia.org/wiki/Voronoi_diagram>`_ 的概念来理解。首先使用 current centroids (当前质心)计算点的 Voronoi 图。 Voronoi 图中的每个 segment (段)都成为一个 separate cluster (单独的簇)。其次,centroids(质心)被更新为每个 segment (段)的 mean(平均值)。然后,该算法重复此操作,直到满足停止条件。 通常情况下,当 iterations (迭代)之间的 objective function (目标函数)的相对减小小于给定的 tolerance value (公差值)时,算法停止。在此实现中不是这样: 当质心移动小于 tolerance (公差)时,迭代停止。

给定足够的时间,K-means 将总是收敛的,但这可能是 local minimum (局部最小)的。这很大程度上取决于 initialization of the centroids (质心的初始化)。 因此,通常会进行几次 different initializations of the centroids (初始化不同质心)的计算。帮助解决这个问题的一种方法是 k-means++ 初始化方案,它已经在 scikit-learn 中实现(使用 init='k-means++' 参数)。 这将初始化 centroids (质心)(通常)彼此远离,导致比随机初始化更好的结果,如参考文献所示。

可以给出一个参数,以允许 K-means 并行运行,称为 n_jobs。给这个参数一个正值使用许多处理器(默认值: 1)。值 -1 使用所有可用的处理器,-2 使用一个,等等。Parallelization (并行化)通常以 cost of memory(内存的代价)加速计算(在这种情况下,需要存储多个质心副本,每个作业使用一个)。

Warning

   

当 numpy 使用 Accelerate 框架时,K-Means 的并行版本在 OS X 上损坏。这是 expected behavior (预期的行为): Accelerate 可以在 fork 之后调用,但是您需要使用 Python binary(二进制)(该多进程在 posix 下不执行)来执行子进程。

K-means 可用于 vector quantization (矢量量化)。这是使用以下类型的 trained model (训练模型)的变换方法实现的 KMeans 。

示例:

  • Demonstration of k-means assumptions: 演示 k-means 是否 performs intuitively (直观执行),何时不执行
  • A demo of K-Means clustering on the handwritten digits data: 聚类手写数字

参考:

  • “k-means++: The advantages of careful seeding” Arthur, David, and Sergei Vassilvitskii, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics (2007)

2.3.2.1. 小批量 K-Means

2.3.3. Affinity Propagation

2.3.4. Mean Shift

2.3.5. Spectral clustering

2.3.6. 层次聚类

2.3.6.2. 添加连接约束

2.3.7. DBSCAN

2.3.8. Birch

2.3.9. 聚类性能度量

2.3.9.1. 调整后的 Rand 指数

2.3.9.2. 基于 Mutual Information (互信息)的分数

2.3.9.2.3. 数学公式

2.3.9.3. 同质性,完整性和 V-measure

2.3.9.4. Fowlkes-Mallows 分数

2.3.9.5. Silhouette 系数

2.3.9.6. Calinski-Harabaz 指数

官方文档: http://scikit-learn.org/stable/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html

有兴趣的们也可以和我们一起来维护,持续更新中 。。。

机器学习交流群: 629470233

这篇关于【Scikit-Learn 中文文档】21 聚类 - 无监督学习 - 用户指南 | ApacheCN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550059

相关文章

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进