MSCNN论文解读-A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

本文主要是介绍MSCNN论文解读-A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 多尺度深度卷积神经网络进行快速目标检测:

两阶段目标检测器,与faster-rcnn相似,分为an object proposal network and an accurate detection network. 文章主要解决的是目标大小不一致的问题,尤其是对小目标的检测,通过多层次的结构,实现多尺度的目标检测。

之前所使用的简单的单一尺度的目标检测器通常为了识别出图片中大小适中的目标而将感受野设定为一个适当的大小,这种设定对于较大或较小的目标的识别效果都比较差。通常解决小目标的识别是通过将输入图片进行上采样的方法,但是这种方法所消耗的内存和计算量都很大,所以本篇文章所采用的多尺度目标检测器能够解决这种目标大小与感受野不一致的现象,每一个检测层只着重检测与这一层尺寸相匹配的目标。换句话说,就是在网络的浅层检测小目标,在深层检测大目标。

 

文章第二个贡献在于利用特征上采样代替输入图片上采样,扩大小目标的分辨率,提高识别准确率。这一部分是利用一个反卷积层实现,采用的方法是双线性插值的方法,减少了内存和计算的消耗。

第三部分是目标检测网络的第一个阶段-生成候选框的子网络(Multi-scale Object Proposal Network )。这一部分分三个主要部分。

3.1多尺度检测

多尺度检测分为两种方法:(1)利用一个单一尺度的分类器并将输入图片多次重新缩放成不同比例进行检测,使分类器能够与所有尺寸的目标相匹配。(2)利用卷积神经网络特征的复杂性。本文采用的是一个多尺度的检测方法,在卷积过程中的多个卷积层中进行检测,但是输入采用单一尺度的图片,并且每个检测层只检测固定尺寸大小的图片。

3.2架构

 

文章中的MS-CNN proposal network如图三所示,图像中间是网络的主干,同时在一些卷积层中带有分支结构。其中每个分支都是一个单一尺度的目标检测器。注意在第4-3个卷积层后带有一个缓冲层,是为了防止低层次卷积层在反向传播过程中影响主干网络的梯度。

整个proposal network子网络的损失用W来表示,S是训练目标的一个集合。其中整体的损失数由公式(1)进行计算,是将每一个检测层的损失叠加在一起作为整体损失,损失的计算与faster r-cnn相似,分别计算分类损失和回归损失。分类采用对数损失,回归采用SMOOTH-L1损失。

3.3采样

对于每一个检测层训练样本都分为正、负样本。其中候选框是通过一个Anchor作为滑动窗口的中心,在特征映射上滑动产生的。Anchor的大小设置与卷积核的大小相关,并且不同检测层的大小设置也不同,具体设置如表一所示。当候选框与真实样本的IOU值大于等于0.5时,被标记为正样本,当IOU值小于0.2时被标记为负样本,其余的丢弃。

 

但是对于一张自然图片,目标与非目标的比例通常不匹配。采样就是要解决这种正负样本不平衡的现象,通常是对负样本进行采样,文中介绍了三种方法分别为:(1)随机采样,即随机的选取负样本。(2)自定义方法,文中是将所有负样本按照分数进行排名,选取前n个强负样本。(3)混合方法,一半采用随机采样,一半采用按分数排名。

为了保证每一个检测层只检测这一层次所对应尺度的目标,在训练样本中,这一层次的训练样本必须包含所对应范围内的所有尺寸。那么就可能会出现一个检测层中没有正样本的出现,导致正负样本比例失调,使学习的模型不稳定,所以在计算分类损失时将检测到的正负样本乘以不同的系数一减少负样本对整体的影响。

第四部分是目标检测子网络的介绍,在加入检测子网络后,整个网络的损失通过公式(6)进行计算,前一部分为候选框子网络的损失,后一部分为检测子网络的损失。其中检测子网络的损失计算公式与faster r-cnn相似,M+1为M个类别和一个背景。第四部分分为两个主要部分:

4.1 cnn特征值插图

在第4-3个卷积层后通过反卷积加入一个卷积层,实现特征映射的上采样,对于小目标的识别更加准确。

4.2上下文嵌入

如图绿色框代表检测到的目标候选框,蓝色框为带有该目标的上下文信息的候选框,其中蓝色框为绿色框的1.5倍,通过将这两个框进行堆叠,在通过一个降维卷积层将冗余的信息进行压缩,在不损失准确率的情况下减少了参数。

 

这篇关于MSCNN论文解读-A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550009

相关文章

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

MySQL8.0临时表空间的使用及解读

《MySQL8.0临时表空间的使用及解读》MySQL8.0+引入会话级(temp_N.ibt)和全局(ibtmp1)InnoDB临时表空间,用于存储临时数据及事务日志,自动创建与回收,重启释放,管理高... 目录一、核心概念:为什么需要“临时表空间”?二、InnoDB 临时表空间的两种类型1. 会话级临时表

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at