Resnet50网络的应用—抑郁症诊断

2023-12-29 06:50

本文主要是介绍Resnet50网络的应用—抑郁症诊断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前边

本人研究生阶段的研究内容为抑郁症诊断,最近一直在想搭建件简单有效的网络,提升自己编码能力的同时,推动科研的进展。本文是总结了最近两周学习的论文中,应用到Resnet_50网络的,在此进行整理和总结。欢迎相同方向的同学交流学习。

正文

相比于之前的思路,本部分选择的是三个论文,都是借助Resnet_50网络作为核心网路的,我觉得这个方向是可以进行相应的学习和研究的。


论文名称:DEPRESSION DETECTION BASED ON DEEP DISTRIBUTION LEARNING

数据集:AVEC2013、AVEC2014

创新点:本文的出发角度是很好的,解决现在部分模型中,损失函数是基于标记的面部图像,没有明确地探讨所有面部图像与抑郁水平之间的序数关系。通过对整个个体图片的完全整理,实现对所有图对相应的抑郁分数的对应,从而降低误差。

整体结构:

整体模型图如下图:

本文将抑郁症诊断问题作为分类问题处理的,整体以一个样本的所有图片作为一个样本,对应一个label。

本文提出  expectation loss 来描述抑郁分数的分布,首先针对输入的 i 个图片Xi,Yi为对应所以的label,Zi表示系统的输出抑郁症分数,计算获取概率,

为了求得分布,先计算下期望值,其中j表示label:

 

期望损失函数就可以表示为,其中M为bath_size:

实验部分:

 预处理:1>采样,AVEC2013每100帧取一帧,AVEC2014每10帧取一帧;2>人脸对齐裁剪MTCNN工具

 模型:在VGG FACE 上训练过的Resnet_50 

 评价标准 : MSE和RMS

结果:结果效果相比于之前的模型还是有很大的进步的,这也鼓励大家从整体的角度来考虑诊断的问题。

 现阶段思路的问题:实验中,作者是将一个vedio裁剪的图片一次送入到网络中吗?图片特别多,硬件不支持的问题是怎么处理的那?


论文名称:Learning content-adaptive feature pooling for facial depression recognition in videos

数据集:AVEC2014

创新点:作者发现,针对每个图片,模型认定其对最终结果的影响权重都是一样的。显然,这样是存在问题的,因为有的帧图片中的姿势、角度并不适合系统进行相应分数诊断。所以,作者借助memory attention mechanism 来对帧图片进行权重的分配,以使得效果较好的图片对结果起到主导作用。

整体结构:

从整体来看,网络是分为两部分:Resnet_50网络提取图片特征,级联的两层attention网络进行权重分配,最后的全连层输出抑郁诊断结果,网络整体结构如下图:

通过Resnet_50网络的到的特征,然后希望通过attention机制得到聚合向量h,其中\alpha表示的是权重

       \alpha的计算如下,首先通过一纬卷积核\theta ^T的卷积计算得到重要性系数c^{_{k}}将结果输入到softmax中得到相应的权重其实仔细的考虑,这获取权重的方式正是最正经的attention的应用。

由于是级联attention机制,所以两者的关系为:

最后的损失函数可以定义为:

实验结果:相比来看,结果没有一个论文的结果好。其实在再次思考论文的时候,我意识到,在之前attention机制是对一张图使用,抓住图种表达信息的关键信息,比如常见的输出人脸的哪个表达信息的图。在本文中,是将多个图看作是主体,使用attention机制选择出贡献较好的图片


论文名称:ENCODING TEMPORAL INFORMATION FOR AUTOMATIC DEPRESSION RECOGNITION

FROM FACIAL ANALYSIS

数据集:AVEC2013、AVEC2014

创新点:在传统双流的基础上,对时间特征的预处理做了新的处理,使用的提取高级语义特征的网络为Resnet_50网络

整体结构:

从时间和空间两个角度进行抑郁症诊断的模型从2015年首次使用抑郁症诊断就开始 了,通过看这个模型图可以感受到依旧是从双流的角度出发的,不同的是主体的网络已经不再是之前的CNN网络。本文的主要创新点在于这个时间流的特征。


其实,本文考虑的问题也是各种抑郁症诊断过程中不可避免的问题-----过拟合。 文中提出了一种新的时间池方法来捕获和编码视频剪辑的时空动态到图像地图。其实在早期的文章中,也是会通过光流图实现时间特征的提取。其实现过程如下所示:

实验:

 预处理:1>采样,AVEC2013每100帧取一帧,AVEC2014每10帧取一帧;2>人脸对齐裁剪MTCNN工具

 模型:在VGG FACE 上训练过的Resnet_50 

 评价标准 : MSE和RMS

结果:这个结果如果是真实的,那么他就是我见过的最好的结果。


总结:

这是一部分我对论文的总结,其中还是有很多自己不理解的地方。由于这些论文作者都没公开代码,所以还有一些理解上的问题。现阶段,我选择使用Resnet_50网络开始搭建网路。

这篇关于Resnet50网络的应用—抑郁症诊断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548676

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD