干货推荐:看过介绍 Python 迭代器和生成器最易懂、最全面的文章

本文主要是介绍干货推荐:看过介绍 Python 迭代器和生成器最易懂、最全面的文章,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代器与可迭代对象

概念

迭代器:是访问数据集合内元素的一种方式,一般用来遍历数据,但是他不能像列表一样使用下标来获取数据,也就是说迭代器是不能返回的。

Iterator:迭代器对象,必须要实现 next 魔法函数

Iterable:可迭代对象,继承 Iterator,必须要实现 iter 魔法函数

比如:

 

返回结果:

 

在 Pycharm 中使用 alt+b 进去 list 的源码中可以看到,在 list 类中有 iter 魔法函数,也就是说只要实现了 iter 魔法函数,那么这个对象就是可迭代对象。

上面的例子中 a 是一个列表,也是一个可迭代对象,那么如何才能让这个 a 变成迭代器呢?使用 iter() 即可。

 

返回结果:

 

可以看到现在 a 是可迭代对象又是一个迭代器,说明列表 a 中有 iter 方法,该方法返回的是迭代器,这个时候使用 next 就可以获取 a 的下一个值,但是要记住迭代器中的数值只能被获取一次。

梳理迭代器 (Iterator) 与可迭代对象 (Iterable) 的区别:

可迭代对象:继承迭代器对象,可以用 for 循环(说明实现了 iter 方法)

迭代器对象:可以用 next 获取下一个值(说明实现了 next 方法),但是每个值只能获取一次,单纯的迭代器没有实现 iter 魔法函数,所以不能使用 for 循环

只要可以用作 for 循环的都是可迭代对象

只要可以用 next() 函数的都是迭代器对象

列表,字典,字符串是可迭代对象但是不是迭代器对象,如果想变成迭代器对象可以使用 iter() 进行转换

Python 的 for 循环本质上是使用 next() 进行不断调用,for 循环的是可迭代对象,可迭代对象中有 iter 魔法函数,可迭代对象继承迭代器对象,迭代器对象中有 next 魔法函数

一般由可迭代对象变迭代器对象

可迭代对象

可迭代对象每次使用 for 循环一个数组的时候,本质上会从类中尝试调用 iter 魔法函数,如果类中有 iter 魔法函数的话,会优先调用iter魔法函数,当然这里切记 iter 方法必须要返回一个可以迭代的对象,不然就会报错。

如果没有定义 iter 魔法函数的话,会创建一个默认的迭代器,该迭代器调用 getitem 魔法函数,如果你没有定义 iter 和 getitem 两个魔法函数的话,该类型就不是可迭代对象,就会报错。

比如:

 

这里把注释符去掉返回结果也是一样的,返回结果:

 

迭代器对象

一开始提起,iter 搭配 Iterable 做可迭代对象,next 搭配 Iterator 做迭代器。next() 接受一个迭代器对象,作用是获取迭代器对象的下一个值,迭代器是用来做迭代的,只会在需要的时候产生数据。

和可迭代对象不同,可迭代对象一开始是把所有的列表放在一个变量中,然后用 getitem 方法不断的返回数值,getitem 中的 item 就是索引值。

但是 next 方法并没有索引值,所以需要自己维护一个索引值,方便获取下一个变量的位置。

 

返回结果:

 

上面一个就是完整的迭代器对象,他是根据自身的索引值来获取传入对象的下一个值,并不是像可迭代对象直接把传入对象读取到内存中,所以对于一些很大的文件读取的时候,可以一行一行的读取内容,而不是把文件的所有内容读取到内存中。

这个类是迭代器对象,那么如何才能让他能够使用 for 循环呢?那就让他变成可迭代对象,只需要在类中加上 iter 魔法函数即可。

 

返回结果:

 

可以看到这个时候运行成功,但是这个对象还是属于迭代器对象,因为在 next 获取下一个值会报错。

知识整理

根据上面的代码提示,得到规律:

iter 让类变成可迭代对象,next 让类变成迭代器(要维护索引值)。

可迭代对象可以用 for 循环,迭代器可以用next获取下一个值。

迭代器如果想要变成可迭代对象用 for 循环,就要在迭代器内部加上 iter 魔法函数

可迭代对象如果想要能用 next 魔法函数,使用自身类中的 iter() 方法即可变成迭代器对象

 

返回结果:

 

这个时候是不能再用 next 方法了,应为类 b 是一个可迭代对象,并非迭代器,这个时候不能用 next 方法,但是可以让类 b 继承类 s,这样就能用 next() 方法获取下一个值,但是你的类 b 中要存在索引值,不然会报错,如下代码:

 

返回结果:

 

可以这么做,但是没必要,因为这样违反了设计原则。

迭代器的设计模式

迭代器模式:提供一种方法顺序访问一个聚合对象中的各种元素,而又不暴露该对象的内部

表示。

迭代器的设计模式是一种经典的设计模式,根据迭代器的特性(根据索引值读取下一个内容,不一次性读取大量数据到内存)不建议将 next 和 iter 都写在一个类中去实现。

新建一个迭代器,用迭代器维护索引值,返回根据索引值获取对象的数值,新建另一个可迭代对象,使用 iter 方法方便的循环迭代器的返回值。

生成器

生成器:函数中只要有 yield,这个函数就会变成生成器。每次运行到 yield 的时候,函数会暂停,并且保存当前的运行状态,返回返回当前的数值,并在下一次执行 next 方法的时候,又从当前位置继续往下走。

简单用法

举个例子:

 

返回结果:

 

可以看到return是直接返回数值 1,yield 是返回的一个生成器对象,这个对象的值是 1,使用 next(g) 或者 for x in g:print x 都是可以获取到他的内容的,这个对象是在 python 编译字节码的时候就产生。

 

返回结果:

 

就像迭代器的特性一样,获取过一遍的值是没法再获取一次的,并且不是那种一次把所有的结果求出放在内存或者说不是一次性读取所有的内容放在内存中。

梳理特性:

使用 yield 的函数都是生成器函数

可以使用 for 循环获取值,也可以使用 next 获取生成器函数的值

原理

函数工作原理:函数的调用满足“后进先出”的原则,也就是说,最后被调用的函数应该第一个返回,函数的递归调用就是一个经典的例子。显然,内存中以“后进先出”方式处理数据的栈段是最适合用于实现函数调用的载体,在编译型程序语言中,函数被调用后,函数的参数,返回地址,寄存器值等数据会被压入栈,待函数体执行完毕,将上述数据弹出栈。这也意味着,一个被调用的函数一旦执行完毕,它的生命周期就结束了。

Python 解释器运行的时候,会用 C 语言当中的 PyEval_EvalFramEx 函数创建一个栈帧,所有的栈帧都是分配再堆内存上,如果不主动释放就会一直在里面。

Python 的堆栈帧是分配在堆内存中的,理解这一点非常重要!Python 解释器是个普通的 C 程序,所以它的堆栈帧就是普通的堆栈。但是它操作的 Python 堆栈帧是在堆上的。除了其他惊喜之外,这意味着 Python 的堆栈帧可以在它的调用之外存活。(FIXME: 可以在它调用结束后存活),这个就是生成器的核心原理实现。

Python 脚本都会被 python.exe 编译成字节码的形式,然后 python.exe 再执行这些字节码,使用 dis 即可查看函数对象的字节码对象。

 

返回结果:

 

代码函数运行的时候,Python 将代码编译成字节码,当函数存在 yield 的时候,Python 会将这个函数标记成生成器,当调用这个函数的时候,会返回生成器对象,调用这个生成器对象后C语言中写的函数会记录上次代码执行到的位置和变量。

在 C 语言中的 PyGenObject 中有两个值,gi_frame (存储上次代码执行到的位置 f_lasti 的上次代码执行到的变量 f_locals),gi_code (存储代码),使用 dis 也可以获取到上次代码执行的位置和值。

举个例子:

 

返回结果:

 

生成器可以在任何时候被任何函数恢复执行,因为它的栈帧实际上不在栈上而是在堆上。生成器在调用调用层次结构中的位置不是固定的,也不需要遵循常规函数执行时遵循的先进后出顺序。因为这些特性,生成器不仅能用于生成可迭代对象,还可以用于实现多任务协作。

就是说只要拿到了这个生成器对象,就能对这个生成器对象进行控制,比如继续执行暂停等待,这个就是协程能够执行的理论原理。

应用场景

读取文件,使用 open(‘xxx’).read(2019)// 打开一个文件,每次读取 2019 个偏移量。文件 a.txt 是一行文字,但是特别长,这一行文字根据|符号分开,如何读取?

写入文件代码:

 

读取文件代码:

 

这篇关于干货推荐:看过介绍 Python 迭代器和生成器最易懂、最全面的文章的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548435

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: