低信噪比环境下的语音端点检测

2023-12-29 00:52

本文主要是介绍低信噪比环境下的语音端点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 端点检测技术语音信号处理 的关键技术之一
  • 为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率 归一化 倒谱距离的端点检测算法

1 端点检测

1-1 定义

  • 定义:在 存在背景噪声 的情况下检测出 语音的起始点和结束点这里的重点是 噪声环境下 语音信号的处理

1-2 应用需求

  • 应用于语音信号处理:语音增强、语音识别、编码和传输
  • 需求是:人们希望在远场或者 嘈杂的环境中 也能用语音控制智能设备,因此研究低信噪比环境下高效的语音控制技术具有一定的实际应用价值

1-3 获取信号端点对噪声处理的帮助

  • 语音端点的 准确定位 有助于排除噪声段的干扰、增强系统处理的实时响应性、降低功耗从而提升系统性能
  • 传统的处理噪声的办法(算法):主要采用 语音特征参数 进行检测,通常可划分为 时域和频域 两大类
  • 时域: 短时能量、短时过零率、短时相关性特征被广泛应用
  • 频域: 谱熵、方差、倒谱距离、小波变换等特征也被认为是端点检测的有效参数

1-4 低信噪比环境下的端点检测

  • 端点检测的性能和 信噪比 密切相关——引出——>话题:低信噪比环境下的端点检测

2 瞬态噪声抑制

  • 背景:越来越多的研究 在端点检测前 增强了语音,这对端点检测的准确性有重要影响。
    传统上的语音增强技术利用 时间平滑 来估计噪声的 功率谱密度PSD 是不够的。
    因此提高算法在复杂环境中的稳健性具有广泛的研究意义。
  • 实际生活中出现的大多都是非平稳噪声
    如典型的瞬态干扰:键盘敲击、敲门声等
  • 具有 时间短、频域广 等特点,会对语音造成极大的干扰

2-1 瞬态 PSD 估计

2-1-1 算法实现简介

  • 利用语音、瞬态噪声、背景噪声的不同变化率,引入一个 可跟踪 瞬态信号快速变化 的 最优改进 对数谱 幅度 估计 (Optimally-Modified Log-Spectral Amplitude Estimator, OM-LSA)算法
    (具体做法是:通过分配一个较小的 平滑参数 来调整 OM-LSA 的噪声 PSD 估计分量,以跟踪输入信号频谱的瞬态变化)

2-1-2 具体实现步骤

  • 1、表示被测信号 y ( n ) y(n) y(n)
    y ( n ) = x ( n ) + d ( n ) + t ( n ) y(n)=x(n)+d(n)+t(n) y(n)=x(n)+d(n)+t(n)
    x ( n ) x(n) x(n)为语音信号、 d ( n ) d(n) d(n) 为加性平稳噪声、 t ( n ) t(n) t(n)​为瞬态噪声】
    (感觉和eemd处理很相似:eemd加了一段白噪声)

  • 2、 y ( n ) y(n) y(n) 信号经过加窗、快速傅里叶变换FFT 后可实现 短时傅里叶变换SFFT

  • 3、最小控制递归平均MCRA平滑参数 进行调整再加入反因果窗区分瞬态
    可为修正的 OM-LSA 算法提供准确的噪声 PSD估计(这一步感觉这种新处理方法的关键)

2-1-3 改进的噪声 PSD 估计算法流程图

  • 虚线框图为调整部分
    在这里插入图片描述

  • 注:IFFT为 逆傅里叶变换

  • FFT:快速傅里叶变换
    信号从 时域转换到频域FFT变换的结果是复数(即得到的频域是复数)
  • IFFT:逆快速傅里叶变换
    信号从 频域转换到时域 ,将频域数据(复数)进行虚部取反得到共轭复数然后在进行FFT变换得到时域数据
%% 使用 快速傅里叶变换算法 计算 Y的逆离散傅里叶变换(X 与 Y 的大小相同)
X = ifft(Y)
% 如果 Y 是向量,则 ifft(Y) 返回该向量的逆变换。   
% 如果 Y 是矩阵,则 ifft(Y) 返回该矩阵每一列的逆变换。
% 如果 Y 是多维数组,则 ifft(Y) 将大小不等于 1 的第一个维度上的值视为向量,并返回每个向量的逆变换。

X = = i f f t ( f f t ( X ) ) X==ifft(fft(X)) X==ifft(fft(X)) 等式是成立的

参考文献:一种低信噪比环境下的语音端点检测算法-卜玉婷,曾庆宁,郑展恒.pdf

这篇关于低信噪比环境下的语音端点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547850

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Java 与 LibreOffice 集成开发指南(环境搭建及代码示例)

《Java与LibreOffice集成开发指南(环境搭建及代码示例)》本文介绍Java与LibreOffice的集成方法,涵盖环境配置、API调用、文档转换、UNO桥接及REST接口等技术,提供... 目录1. 引言2. 环境搭建2.1 安装 LibreOffice2.2 配置 Java 开发环境2.3 配

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.