Java堆结构PriorityQueue实现

2023-12-28 10:32

本文主要是介绍Java堆结构PriorityQueue实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在堆排序这篇文章中千辛万苦的实现了堆的结构和排序,其实在Java 1.5版本后就提供了一个具备了小根堆性质的数据结构也就是优先队列PriorityQueue。下面详细了解一下PriorityQueue到底是如何实现小顶堆的,然后利用PriorityQueue实现大顶堆。

PriorityQueue的数据结构

这里写图片描述

PriorityQueue的逻辑结构是一棵完全二叉树,存储结构其实是一个数组。逻辑结构层次遍历的结果刚好是一个数组。

PriorityQueue的操作

①add(E e) 和 offer(E e) 方法

add(E e) 和 offer(E e) 方法都是向PriorityQueue中加入一个元素,其中add()其实调用了offer()方法如下:

public boolean add(E e) {return offer(e);}

下面主要看看offer()方法的作用: 
这里写图片描述 
如上图调用 offer(4)方法后,往堆中压入4然后从下往上调整堆为小顶堆。offer()的代码实现:

public boolean offer(E e) {if (e == null)throw new NullPointerException();//如果压入的元素为null 抛出异常      int i = size;if (i >= queue.length)grow(i + 1);//如果数组的大小不够扩充size = i + 1;if (i == 0)queue[0] = e;//如果只有一个元素之间放在堆顶elsesiftUp(i, e);//否则调用siftUp函数从下往上调整堆。return true;}

对上面代码做几点说明: 
①优先队列中不能存放空元素。 
②压入元素后如果数组的大小不够会进行扩充,上面的queue其实就是一个默认初始值为11的数组(也可以赋初始值)。 
③offer元素的主要调整逻辑在 siftUp ( i, e )函数中。下面看看 siftUp(i, e) 函数到底是怎样实现的。

private void siftUpComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>) x;while (k > 0) {int parent = (k - 1) >>> 1;Object e = queue[parent];if (key.compareTo((E) e) >= 0)break;queue[k] = e;k = parent;}queue[k] = key;}

上面的代码还是比较简明的,就是当前元素与父节点不断比较如果比父节点小就交换然后继续向上比较,否则停止比较的过程。

② poll() 和 remove() 方法 
poll 方法每次从 PriorityQueue 的头部删除一个节点,也就是从小顶堆的堆顶删除一个节点,而remove()不仅可以删除头节点而且还可以用 remove(Object o) 来删除堆中的与给定对象相同的最先出现的对象。先看看poll()方法。下面是poll()之后堆的操作

删除元素后要对堆进行调整: 
这里写图片描述

堆中每次删除只能删除头节点。也就是数组中的第一个节点。 
这里写图片描述 
将最后一个节点替代头节点然后进行调整。  


如果左右节点中的最小节点比当前节点小就与左右节点的最小节点交换。直到当前节点无子节点,或者当前节点比左右节点小时停止交换。

poll()方法的源码

public E poll() {if (size == 0)return null;//如果堆大小为0则返回null      int s = --size;modCount++;E result = (E) queue[0];E x = (E) queue[s];queue[s] = null;
//如果堆中只有一个元素直接删除        if (s != 0)siftDown(0, x);
//否则删除元素后对堆进行调整            return result;}

看看 siftDown(0, x) 方法的源码:

private void siftDownComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>)x;int half = size >>> 1;        // loop while a non-leafwhile (k < half) {int child = (k << 1) + 1; // assume left child is leastObject c = queue[child];int right = child + 1;if (right < size &&((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)c = queue[child = right];if (key.compareTo((E) c) <= 0)break;queue[k] = c;k = child;}queue[k] = key;}

siftDown()方法就是从堆的第一个元素往下比较,如果比左右孩子节点的最小值小则与最小值交换,交换后继续向下比较,否则停止比较。 
remove(4)的过程图: 
这里写图片描述 
先用堆的最后一个元素 5 代替4然后从5开始向下调整堆。这个过程和poll()函数一样,只不过poll()函数每次都是从堆顶开始。 
remove(Object o)的代码:

 public boolean remove(Object o) {int i = indexOf(o);//先在堆中找到o的位置if (i == -1)return false;//如果不存在则返回false。    else {removeAt(i);//否则删除数组中第i个位置的值,调整堆。return true;}}

removeAt(int i)的代码

 private E removeAt(int i) {assert i >= 0 && i < size;modCount++;int s = --size;if (s == i) // removed last elementqueue[i] = null;else {E moved = (E) queue[s];queue[s] = null;siftDown(i, moved);if (queue[i] == moved) {siftUp(i, moved);if (queue[i] != moved)return moved;}}return null;}

使用PriorityQueue实现大顶堆

PriorityQueue默认是一个小顶堆,然而可以通过传入自定义的Comparator函数来实现大顶堆。如下代码:

 private static final int DEFAULT_INITIAL_CAPACITY = 11;
PriorityQueue<Integer> maxHeap=new PriorityQueue<Integer>(DEFAULT_INITIAL_CAPACITY, new Comparator<Integer>() {@Overridepublic int compare(Integer o1, Integer o2) {                return o2-o1;}});

实现了一个初始大小为11的大顶堆。这里只是简单的传入一个自定义的Comparator函数,就可以实现大顶堆了。

这篇关于Java堆结构PriorityQueue实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545645

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据