使用vsearch进行16s扩增子高通量序列分析步骤

2023-12-28 04:20

本文主要是介绍使用vsearch进行16s扩增子高通量序列分析步骤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、vsearch分析工具介绍:

        VSEARCH是一个开源免费的64位,无内存限制的扩增子数据处理分析软件。(点到为止,其他的建议大家参考原文献和网站)

        github:GitHub - torognes/vsearch: Versatile open-source tool for microbiome analysis

        最新文献:Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. doi:10.1101/081257

        二进制文件下载(直接复制到目录就可以开始运行的):Release VSEARCH 2.23.0 · torognes/vsearch · GitHub

2、vsearch 安装:

        建议大家直接下载二进制文件,github有时候不通,可以使用本站链接下载

        https://download.csdn.net/download/zrc_xiaoguo/88404546

        注意事项:无论使用编译安装还是使用二进制直接复制运行,都要注意安装对应版本的依赖库,出现报错时参考一下github里安装指定依赖, 高版本的vesearch对应的glibc也较高,可能需要重新编译新版本的zlib之类的库(如有不会调试的,欢迎骚扰!)

        安装完后,将指定安装目录加入系统环境,集群或超算建议使用共享目录,多节点同时运行,方便后面直接运行,安装好后可查看版本:

   3、vsearch分析步骤:按顺序

###双端配对,使用参数mergepairs ,与usearch使用方法一致,但注意加参数的时候的格式
vsearch --fastq_mergepairs fastq_1.fq --reverse fastq_2.fq --fastqout merged.16s1.fq --relabel @
# label可以按自己喜好,但要注意与后面的label提取对应,一般不建议修改

merge 结果: 注意merged后面的百分数,正常应该比较高,如果远低于其他文献或者自己其他样品,需要注意       

翻转序列,并与原序列合并:  

###翻转序列,并将翻转序列与原序列合并到一个文件
vsearch --fastx_revcomp merged.16S1.fq --fastqout merged.16S1_rc.fq
#多个文件可使用for语句#翻转完成后直接合并原序列
cat merged.16S1.fq merged.16S1_rc.fq >mergedFR.16s1.fq
#或
cat merged.16S1{,_rc}.fq>mergedFR.16s1.fq
###合并后查看文件大小是否为原来两倍大小

使用python脚本fastq_strip_barcode_relabel2.py提取对应barcode的序列,并重新标记label为16s

python脚本参考,大家可自行到usearch或其他地方下载:扩增子分析中需要使用到的python脚本资源-CSDN文库

###注意python需Python2环境,脚本位置,barcode序列(这里用的是16S其中的典型序列之一,以及样品barcode文件,文件格式间下方:
python /py/fastq_strip_barcode_relabel.py mergedFR.16S1.fq GTGCCAGCMGCCGCGGTAA barcode.txt B16s > barcode.relabel.16S1.fq###barcode.txt 格式
>F_2
AGTTCATACGGC
>F_3
TCGCTTTAACCT
>F_4

基于barcode分离出的样品序列单独再次翻转,并加上label后缀

###
vsearch --fastx_revcomp barcode.relabel.16S1.fq --label_suffix _RC --fastqout barcode.relabeled.16S1_rc.fq

  再利用反向barcode提取分样:

###这里的反向barcode特征序列和样品barcode按自己实际替换。
python /nfs/sopt/py/fastq_strip_barcode_relabel2.py barcode.relabeled.16S1_rc.fq GGACTACHVGGGTWTCTAAT barcode_16S_r2.txt B16s > mergedFR.relabeled2.16S1.fq

将同一批不重复样品的所有正反分样的序列合并到一起进行otu分析和物种分类 

###合并所有已标记样品名称的序列
cat mergedFR.relabeled2.16S1.fq mergedFR.relabeled2.16S1.fq {...} > mergedFR.relabel.16s.fq###fastq过滤,去除读长较短的序列
vsearch --fastq_filter mergedFR.relabel.16s.fq --fastq_maxee 0.5 --fastq_minlen 250 --fastq_trunclen 250 --fastq_maxns 1 --fastaout mergedFR.relabel.16S.QC.fa###获取无重复序列unique_seqs
vsearch --derep_fulllength mergedFR.relabel.16S.QC.fa --sizeout --relabel Uniq --output unique_seqs.fa###unique序列排序,加速后续分析
vsearch --sortbysize unique_seqs.fa --output sorted.16s.fa --minsize 2###使用unoise3处理输出otu序列和tab表,新版本特性
###现在版本的vsearch还是alpha版本,所以先用usearch开放版本处理
usearch -unoise3 sorted.16s.fa -zotus zotus.fa -tabbedout uniose3.txt###同样使用usearch开放版本处理uniose3聚类模块,获取otutable
usearch -unoise3 unique_seqs.fa -zotus ref_zotus.fa -minsize 9
usearch -otutab mergedFR.relabel.16S.QC.fa -zotus zotus.fa -otutabout otu_table_16S_unoise3.txt###同样可以使用vsearch的usearch-global模块获取数据otu丰度表
vsearch --usearch_global mergedFR.relabel.16S.QC.fa --db zotus.fa --id 0.99 --otutabout otus_counts.txt###使用rdp数据库的classifier进行物种分类,可按服务器实际资源调整内存
java -Xmx8g -jar /rdp_classifier_2.12/dist/classifier.jar classify -c 0.5 -f filterbyconf -o classification.filterbyconf.16s.txt zotus.fa

   

以下是私房菜,全vsearch分析流程,可放入脚本直接运行,敬请收藏:

###python脚本环境需要py2,使用前可以先使用conda激活conda环境,或者直接在py2环境下运行
###序列文件,barcode及特征序列请根据自己实际修改;vsearch --version
echo ---------------------------------------------
date
echo Mergepairs and relabel with "@"
vsearch --fastq_mergepairs ./datalink/fastq_1.fq \--reverse ./datalink/fastq_2.fq \--fastqout a.merged.fq \--relabel @
echo Mergepairs over!
echo ---------------------------------------------
date
echo ---------------------------------------------
vsearch --fastx_revcomp a.merged.fq \--label_suffix _RC \--fastqout a.merged_rc.fq
echo ---------------------------------------------
date
echo ---------------------------------------------
cat a.merged.fq a.merged_rc.fq >  a.mergedFR.fq
echo --------------------------------------------
python ./testlink/py/fastq_strip_barcode_relabel2.py a.mergedFR.fq \GGACTACHVGGGTWTCTAAT ./datalink/barcode_16S.txt B16S > b.barcode.16S.fq
echo Barcode_16S over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Revcomp 16s start
vsearch --fastx_revcomp b.barcode.16S.fq \--fastqout c.barcode.16S_rc.fq
echo Revcomp 16s over!
echo ---------------------------------------------
date
echo ---------------------------------------------
cat b.barcode.16S.fq c.barcode.16S_rc.fq > c.barcode.16S_FR.fqecho Fastq filter start!
vsearch --fastq_filter c.barcode.16S_FR.fq \--fastq_maxee 0.5 \--fastq_minlen 250 \--fastq_trunclen 250 \--fastq_maxns 1 \--fastaout d.barcode.16S_FR.QC.fa
echo Fastq filter over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Derep start! Dereplicate across samples and remove singletons.
vsearch --derep_fulllength d.barcode.16S_FR.QC.fa \--output e.dereped.16S.fa \--sizeout
echo Derep over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Sortbysize!        
vsearch --sortbysize e.dereped.16S.fa \--output f.sorted.16S.fa \--minsize 2
echo ---------------------------------------------
echo  Cluster_size start! Precluster at 97% before chimera detection.
vsearch --cluster_size f.sorted.16S.fa \--id 0.97 \--strand plus \--sizein \--sizeout \--relabel OTU_ \--uc g.cluster_size.16S.uc \--centroids g.cluster_size.16S.fa
echo Cluster_size over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo De novo chimera detection.
vsearch --uchime_denovo g.cluster_size.16S.fa \--sizein \--sizeout \--nonchimeras h.denovo.nonchimeras.16S.fa
echo Obtained unique sequences after de novo chimera detection.
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Usearch_global work start!
vsearch --usearch_global d.barcode.16S_FR.QC.fa \--db h.denovo.nonchimeras.16S.fa \--strand plus \--id 0.97 \--maxaccepts 4 \--maxrejects 128 \--uc i.map_rdp_16s.uc
echo Global over!
date
echo ---------------------------------------------
echo Convert .uc to .txt
python ./testlink/py/uc2otutab.py i.map_rdp_16s.uc > j.OTU_table_16S.txt
echo Convert over!
date
echo ---------------------------------------------
echo Start RDP classify!
java -Xmx200g \-jar /rdp_classifier_2.12/dist/classifier.jar classify \-c 0.5 \-f filterbyconf \-o k.class.filterbyconf.16S.txt h.denovo.nonchimeras.16S.fa
echo RDP Classify work over!
date
echo All 16S sequences processes done!

有不足支出敬请指正!!

这篇关于使用vsearch进行16s扩增子高通量序列分析步骤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545056

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.