java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文

2023-12-28 04:20

本文主要是介绍java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“split_libraries.py” 和“split_libraries_fastq.py”实现数据拆分和数据过滤的双重目的。Mothur利用“Trim.seqs”。不过QIIME和Mothur都不能直接处理sff文件(454下机产生的数据格式),不过可各自利用“process_sff.py”和Sffinfo将sff格式转换为FASTA和QUAL文件。

数据过滤考虑的参数有:minimum average quality score allowed in a read、maximum number of ambiguous bases allowed、minimum and maximum sequence length、maximum length of homopolymer allowed、maximum mismatches inprimer or barcode allowed、whether to truncate reverse primer, and so on.

(2)Denoise and chimera checking

16s建库的pcr过程、测序过程均会导致序列出现错误,在分析过程过程中需要有效排除这种错误。测序误差矫正常用的工具有Denoiser(implemented in QIIME)、AmpliconNoise、Acacia、Pre.cluster(implemented in Mothur)。嵌合体查找的工具有ChimeraSlayer、UCHIME、Persus、DECIPHER,ChimeraSlayer、UCHIME、Persus在mothur中均可调用。在这些工具中,存在有待于优化的问题(these different methods often disagree with one another on the list of identified chimeras,probably because of their different mechanisms or algorithms. More efforts are required to evaluate these methods and coordinate their inconsistencies in chimera identification.)

328d5170a2a19271a5e955cef593521f.png

在分析中有个关于古细菌序列的情况需要注意:a very small proportion of archaeal sequences may be generated for 16S rRNA gene amplicon datasets amplified with bacteria-specific primers. These unexpected sequences should be identified after denoising and chimeraremoval, and are advised to be discarded before subsequent data normalization.

(3)Data normalization

测序深度不理想和不均匀的话会对alpha多样性及beta多样性均有影响。Uneven sequencing depth can affect diversity estimates in a single sample (i.e.,alpha diversity), as well as comparisons across different samples (i.e., beta diversity), thus data normalization is required. 对于此问题有两种处理策略,分别是relative abundance and random sampling (i.e., rarefaction),in addition, z-score亦用于normalization的过程中。但不同的方法均会有缺点。

(4)Picking OTUs and representative sequences

OTU的界定主要根据序列的一致性进行,(The OTUs are picked based on sequence identity, and various identity cutoffs of 16S rRNA gene have been used for different taxonomic ranks. For example, identity cutoffs recommended by MEGAN are 99 % for species, 97 % for genus,95 % for family, and 90 % for order level, respectively)。OTU界定时选择的工具与算法对后期分析有很大影响(The OTU picking strategy and algorithms have significant effects in the downstream data interpretation. )根据分析过程中是否使用数据库,OTU界定的策略可分为de novo、closed reference和open reference。在  OTU界定中有很多聚类的方法,There are many clustering or alignment tools available for OTU picking, such as Uclust, cd-hit, BLAST, mothur, usearch, and prefix/suffix. These tools are implemented in QIIME. Among them, the mothur method contains three clustering algorithms to pick de novo OTUs, namely, nearest neighbor, furthest neighbor, or average neighbor. 当序列聚类好后,代表了一个OTU,接下来就是从这个OTU找到代表序列,一种做法是a representative sequence can be a random, the longest, the most abundant(as default in QIIME), 另一种操作方法是the first sequence in an OTU cluster.  还有一种策略是the distance method in mothur identifies the   sequence with the smallest maximum distance to the other sequences as the representative sequence.

(5)Taxonomic assignment

taxonomic assignment的策略有:(1)word match,如RDP classfier,(2)best hit,(3)Lowest Common Ancestor,如MEGAN、SINA Alignment Service.

(6)Phylogenetic analysis

Phylogenetic relationships一般可以用树来表示,phylogenetic relationships主要是通过序列比对来实现的,序列比对的工具有ClustalW, MUSCLE, Clustal Omega, Kalign, T-COFFEE, COBLAT和FastTree. 目前针对16s rRNA NGS数据的分析工具都可以实现,如MEGA,RAxML,MRBAYES,PhyML,TreeView,Clearcut,FitTree. 其中RAxMLand PhyML are the most widely used programs for maximum-likelihood phylogenetic analysis, probably because they are specifically designed and optimized for such purpose.

(7)Alpha- and beta-diversity analyses

alpha多样性有众多指标可以表示,在mothur中有Shannon, Berger-Parker,Simpson, Q statistic; observed richness, Chao1, ACE, and jackknife。而在QIIME中,有phylogenetic diversity (PD)-whole tree, chao1, and observed species.

还有一种物种丰度的比较方法:rarefaction curve. QIIME中主要用“single_rarefaction.py”、 “multiple_rarefaction.py”,在mothur中主要用“Rarefaction.single”和“Rarefaction.shared”.

beta多样性计算主要反映不同样本之间的差异度,several distance metrics, such as Unifrac, Bray-Curtis, Euclidean,Jaccard index, Yue & Clayton, and Morisita-Horn, have been often employed. beta多样性计算根据是否考虑OTU的相对丰度,可分为定量指数和定性指数。

(8)Statistical and network analysis

在Two-sample/group中,多考虑t-test。在其中需要注意,Particularly for independent two-samplet-test, independence and equal variances (which canbe tested by F-test, Levene’s test, etc.) of two populations arerequired. In the case of non-normal distribution of data sets,nonparametric two-sample tests robust to data non-normality,such as Wilcoxon signed-rank test, and Mann-Whitney U testare applicable for significance testing of difference betweengroup medians.

在Multiple-sample/group tests中,ANOVA。

(9)Clustering and classification

clustering可以分析样品之间的亲疏关系。classfication的策略用来对样品进行类别判定。

(10)Ordination analysis

在样本的相似度和距离计算完后,可以利用principal component analysis (PCA), principal coordinates analysis(PCoA, also known as metric multidimensional scaling), Nonmetric multidimensional scaling (NMDS), canonical correspondence analysis (CCA), linear discriminantanalysis (LDA), and redundancy analysis (RDA)等构建样本间的关系。

(11)Network-based modeling

与基因表达、代谢分子、蛋白等数据一起分析共表达网路或者共表达模式(co-occurrence and co-exclusion patterns)

参考文章:JuF,ZhangT.16srRNAgenehigh throughputsequencingdataminingofmicrobiotadiversityandinteractions,ApplMicrobiolBiotechnol.2015,99(10):4119-4129

这篇关于java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_31482671/article/details/115988833
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/545055

相关文章

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

springboot整合mqtt的步骤示例详解

《springboot整合mqtt的步骤示例详解》MQTT(MessageQueuingTelemetryTransport)是一种轻量级的消息传输协议,适用于物联网设备之间的通信,本文介绍Sprin... 目录1、引入依赖包2、yml配置3、创建配置4、自定义注解6、使用示例使用场景:mqtt可用于消息发

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

详解Java中三种状态机实现方式来优雅消灭 if-else 嵌套

《详解Java中三种状态机实现方式来优雅消灭if-else嵌套》这篇文章主要为大家详细介绍了Java中三种状态机实现方式从而优雅消灭if-else嵌套,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录1. 前言2. 复现传统if-else实现的业务场景问题3. 用状态机模式改造3.1 定义状态接口3

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时