双线性插值理解与Python实现

2023-12-27 23:32

本文主要是介绍双线性插值理解与Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

双线性插值

 

公式就是这么推来的,主要就是在x方向和y方向上都进行线性插值,利用临近点进行计算

在计算的时候利用了几何中心对齐来优化原来的直接缩放

 

__author__ = 'Alex Wang'import cv2
import time
from math import ceil, floor
import numpy as np'''
python implementation of bilinear interpolation
'''def bilinear_interpolation(img, out_dim):src_h, src_w, channel = img.shapedst_h, dst_w = out_dim[1], out_dim[0]if src_h == dst_h and src_w == dst_w:return img.copy()dst_img = np.zeros((dst_h, dst_w, channel), dtype=np.uint8)scale_x, scale_y = float(src_w) / dst_w, float(src_h) / dst_hfor i in range(channel):for dst_y in range(dst_h):for dst_x in range(dst_w):# find the origin x and y coordinates of dst image x and y# use geometric center symmetry# if use direct way, src_x = dst_x * scale_xsrc_x = (dst_x + 0.5) * scale_x - 0.5src_y = (dst_y + 0.5) * scale_y - 0.5# find the coordinates of the points which will be used to compute the interpolationsrc_x0 = int(floor(src_x))src_x1 = min(src_x0 + 1, src_w - 1)src_y0 = int(floor(src_y))src_y1 = min(src_y0 + 1, src_h - 1)if src_x0 != src_x1 and src_y1 != src_y0:# calculate the interpolationtemp0 = ((src_x1 - src_x) * img[src_y0, src_x0,i] + (src_x - src_x0) * img[src_y0, src_x1, i]) / (src_x1 - src_x0)temp1 = (src_x1 - src_x) * img[src_y1, src_x0,i] + (src_x - src_x0) * img[src_y1, src_x1, i] / (src_x1 - src_x0)dst_img[dst_y, dst_x, i] = int((src_y1 - src_y) * temp0 + (src_y - src_y0) * temp1) / (src_y1 - src_y0)return dst_imgif __name__ == '__main__':img = cv2.imread('bounding_box_and_polygon.png')start = time.time()dst = bilinear_interpolation(img, (1000, 1000))print('cost {} seconds'.format(time.time() - start))cv2.imshow('result', dst)cv2.waitKey()

References:

https://blog.csdn.net/xbinworld/article/details/65660665

https://blog.csdn.net/wudi_X/article/details/79782832

https://en.wikipedia.org/wiki/Bilinear_interpolation

 

这篇关于双线性插值理解与Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544586

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法