强化学习_06_pytorch-TD3实践(CarRacing-v2)

2023-12-27 10:01

本文主要是介绍强化学习_06_pytorch-TD3实践(CarRacing-v2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0、TD3算法原理简介

详见笔者前一篇实践强化学习_06_pytorch-TD3实践(BipedalWalkerHardcore-v3)

1、CarRacing环境观察及调整

Action SpaceBox([-1. 0. 0.], 1.0, (3,), float32)
Observation SpaceBox(0, 255, (96, 96, 3), uint8)

动作空间是[-1~1, 0~1, 0~1], 状态空间是 96 × 96 × 3 96\times96\times3 96×96×3 的图片。

1.1 图片裁剪及跳帧

环境初始的时候有40-50帧是没有意义的,可能还会影响模型训练。同时图片下面黑色部分也是没有太多意义,所以可以直接对图片截取s = s[:84, 6:90]
在这里插入图片描述

对环境进行简单观察会发现,一个step是一帧,一帧很难捕捉动作产生的影响(移动量,奖励等)。所以我们进行跳帧观察(1个action进行n个step,期间累计奖励),从红线看,每隔5帧已经可以看出小车在移动。
在这里插入图片描述

1.2 车驶离赛道判断 & reward调整

我们可以看出在gymnasiumCarRacing-V2连续的环境中没有驶出赛道终止的设定,所以我们可以基于像素进行判断是否驶离赛道。观察三个channel,我们可以看出在第二个channel中可以基于大约75行左右的一行像素进行是否行驶出去的判断
经过试验我们可以直接用s[75, 35:50, 1] 前2个和后2个像素点来判断是否行驶到赛道外。
在这里插入图片描述

    def judge_out_of_route(self, obs):s = obs[:84, 6:90, :]out_sum = (s[75, 35:48, 1][:2] > 200).sum() + (s[75, 35:48, 1][-2:] > 200).sum()return out_sum == 4

在加入了是否行驶到赛道外的判断后,如果判断出了赛道则reward=-10

1.4 对多个输出进行通道叠加FrameStack

进行跳帧可以看出车辆的移动,但是只有多张的连续输入,CNN才能感知连续的动作。所以我们这两将4次跳帧组成一个observe,即最终20个step返回一个observe和叠加reward
在这里插入图片描述

1.5 最终环境构建python code

import gymnasium as gym
import torch
import numpy as np
from torchvision import transforms
from gymnasium.spaces import Box
from gymnasium.wrappers import FrameStackclass CarV2SkipFrame(gym.Wrapper):def __init__(self, env, skip: int):"""skip frameArgs:env (_type_): _description_skip (int): skip frames"""super().__init__(env)self._skip = skipdef step(self, action):tt_reward_list = []done = Falsetotal_reward = 0for i in range(self._skip):obs, reward, done, info, _ = self.env.step(action)out_done = self.judge_out_of_route(obs)done_f = done or out_donereward = -10 if out_done else reward# reward = -100 if out_done else reward# reward = reward * 10 if reward > 0 else rewardtotal_reward += rewardtt_reward_list.append(reward)if done_f:breakreturn obs[:84, 6:90, :], total_reward, done_f, info, _def judge_out_of_route(self, obs):s = obs[:84, 6:90, :]out_sum = (s[75, 35:48, 1][:2] > 200).sum() + (s[75, 35:48, 1][-2:] > 200).sum()return out_sum == 4def reset(self, seed=0, options=None):s, info = self.env.reset(seed=seed, options=options)# steering  gas  breakinga = np.array([0.0, 0.0, 0.0])for i in range(45):obs, reward, done, info, _ = self.env.step(a)return obs[:84, 6:90, :], infoclass SkipFrame(gym.Wrapper):def __init__(self, env, skip: int):"""skip frameArgs:env (_type_): _description_skip (int): skip frames"""super().__init__(env)self._skip = skipdef step(self, action):total_reward = 0.0done = Falsefor _ in range(self._skip):obs, reward, done, info, _ = self.env.step(action)total_reward += rewardif done:breakreturn obs, total_reward, done, info, _class GrayScaleObservation(gym.ObservationWrapper):def __init__(self, env):"""RGP -> Gray(high, width, channel) -> (1, high, width) """super().__init__(env)self.observation_space = Box(low=0, high=255, shape=self.observation_space.shape[:2], dtype=np.uint8)def observation(self, observation):tf = transforms.Grayscale()# channel firstreturn tf(torch.tensor(np.transpose(observation, (2, 0, 1)).copy(), dtype=torch.float))class ResizeObservation(gym.ObservationWrapper):def __init__(self, env, shape: int):"""reshape observeArgs:env (_type_): _description_shape (int): reshape size"""super().__init__(env)self.shape = (shape, shape)obs_shape = self.shape + self.observation_space.shape[2:]self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8)def observation(self, observation):#  Normalize -> input[channel] - mean[channel]) / std[channel]transformations = transforms.Compose([transforms.Resize(self.shape), transforms.Normalize(0, 255)])return transformations(observation).squeeze(0)env_name = 'CarRacing-v2'
env = gym.make(env_name)
SKIP_N = 5
STACK_N = 4
env_ = FrameStack(ResizeObservation(GrayScaleObservation(CarV2SkipFrame(env, skip=SKIP_N)), shape=84), num_stack=STACK_N
)

二、智能体构建

因为是用的CNN,所以需要注意梯度消失的问题。

2.1 actor

主要架构就是CNN + MLP + maxMinScale

  • CNN: 因为环境比较简单第一层用MaxPool2d采样,第二层进行AvgPool2d平滑
    nn.Sequential(nn.Conv2d(in_channels=4, out_channels=16, kernel_size=4, stride=2),nn.ReLU(),nn.MaxPool2d(2, 2, 0),nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2),nn.ReLU(),nn.AvgPool2d(2, 2, 0),nn.Flatten()
    )
    
  • MLP
    • 对cnn提取的特征进行 LayerNorm (一定程度干预梯度消失)
    • 对最后层全连接层的输出进行 LayerNorm (一定程度干预梯度消失)
  • maxMinScale
    • 最后通过tanh激活层action全部归一化到[-1,1]之间
    • 基于环境的动作上线限,用maxMinScale方式将最终的输出映射到[动作下限,动作上限]

actor 网络

class TD3CNNPolicyNet(nn.Module):"""输入state, 输出action"""def __init__(self, state_dim: int, hidden_layers_dim: typ.List, action_dim: int, action_bound: typ.Union[float, gym.Env]=1.0, state_feature_share: bool=False):super(TD3CNNPolicyNet, self).__init__()self.state_feature_share = state_feature_shareself.low_high_flag = hasattr(action_bound, "action_space")print('action_bound=',action_bound)self.action_bound = action_boundif self.low_high_flag:self.action_high = torch.FloatTensor(action_bound.action_space.low)self.action_low = torch.FloatTensor(action_bound.action_space.high)self.cnn_feature = nn.Sequential(nn.Conv2d(in_channels=4, out_channels=16, kernel_size=4, stride=2),nn.ReLU(),nn.MaxPool2d(2, 2, 0),nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2),nn.ReLU(),nn.AvgPool2d(2, 2, 0),nn.Flatten())self.cnn_out_ln = nn.LayerNorm([512])self.features = nn.ModuleList()for idx, h in enumerate(hidden_layers_dim):self.features.append(nn.ModuleDict({'linear': nn.Linear(hidden_layers_dim[idx-1] if idx else 512, h),'linear_action': nn.ReLU()}))self.fc_out = nn.Linear(hidden_layers_dim[-1], action_dim)self.final_ln = nn.LayerNorm([action_dim])def max_min_scale(self, act):"""X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))X_scaled = X_std * (max - min) + min"""# print("max_min_scale(", act, ")")device_ = act.deviceaction_range = self.action_high.to(device_) - self.action_low.to(device_)act_std = (act - -1.0) / 2.0return act_std * action_range.to(device_) + self.action_low.to(device_)def forward(self, state):if len(state.shape) == 3:state = state.unsqueeze(0)try:x = self.cnn_feature(state)except Exception as e:print(state.shape)state = state.permute(0, 3, 1, 2)x = self.cnn_feature(state)x = self.cnn_out_ln(x)for layer in self.features:x = layer['linear_action'](layer['linear'](x))device_ = x.deviceif self.low_high_flag:return self.max_min_scale(torch.tanh(self.final_ln(self.fc_out(x))))return torch.tanh(self.final_ln(self.fc_out(x)).clip(-6.0, 6.0)) * self.action_bound

2.2 critic

  • CNN: 设计同Actor
  • concat状态和action
    • 进行observe和action concat 之前对action进行线性变换(一定程度解决梯度消失 及 原地转圈)
class TD3CNNValueNet(nn.Module):"""输入[state, cation], 输出value"""def __init__(self, state_dim: int, action_dim: int, hidden_layers_dim: typ.List, state_feature_share=False):super(TD3CNNValueNet, self).__init__()self.state_feature_share = state_feature_shareself.q1_cnn_feature = nn.Sequential(nn.Conv2d(in_channels=4, out_channels=16, kernel_size=4, stride=2),nn.ReLU(),nn.MaxPool2d(2, 2, 0),nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2),nn.ReLU(),nn.AvgPool2d(2, 2, 0),nn.Flatten())self.q2_cnn_feature = nn.Sequential(nn.Conv2d(in_channels=4, out_channels=16, kernel_size=4, stride=2),nn.ReLU(),nn.MaxPool2d(2, 2, 0),nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2),nn.ReLU(),nn.AvgPool2d(2, 2, 0),nn.Flatten())self.features_q1 = nn.ModuleList()self.features_q2 = nn.ModuleList()for idx, h in enumerate(hidden_layers_dim + [action_dim]):self.features_q1.append(nn.ModuleDict({'linear': nn.Linear(hidden_layers_dim[idx-1] if idx else 512, h),'linear_activation': nn.ReLU()}))self.features_q2.append(nn.ModuleDict({'linear': nn.Linear(hidden_layers_dim[idx-1] if idx else 512, h),'linear_activation': nn.ReLU()}))self.act_q1_fc = nn.Linear(action_dim, action_dim)self.act_q2_fc = nn.Linear(action_dim, action_dim)self.head_q1_bf = nn.Linear(action_dim * 2, action_dim)self.head_q2_bf = nn.Linear(action_dim * 2, action_dim)self.head_q1 = nn.Linear(action_dim, 1)self.head_q2 = nn.Linear(action_dim, 1)def forward(self, state, action):if len(state.shape) == 3:state = state.unsqueeze(0)try:x1 = self.q1_cnn_feature(state)x2 = self.q2_cnn_feature(state)except Exception as e:state = state.permute(0, 3, 1, 2)x1 = self.q1_cnn_feature(state)x2 = self.q2_cnn_feature(state)for layer1, layer2 in zip(self.features_q1, self.features_q2):x1 = layer1['linear_activation'](layer1['linear'](x1))x2 = layer2['linear_activation'](layer2['linear'](x2))# 拼接状态和动作act1 = torch.relu(self.act_q1_fc(action.float()))act2 = torch.relu(self.act_q2_fc(action.float()))x1 = torch.relu( self.head_q1_bf(torch.cat([x1, act1], dim=-1).float()))# print("torch.cat([x1, action], dim=-1)=", torch.cat([x1, act1], dim=-1)[:5, :])x2 = torch.relu( self.head_q2_bf(torch.cat([x2, act2], dim=-1).float()))return self.head_q1(x1), self.head_q2(x2)def Q1(self, state, action):if len(state.shape) == 3:state = state.unsqueeze(0)try:x = self.q1_cnn_feature(state)except Exception as e:state = state.permute(0, 3, 1, 2)x = self.q1_cnn_feature(state)for layer in self.features_q1:x = layer['linear_activation'](layer['linear'](x))# 拼接状态和动作act1 = torch.relu(self.act_q1_fc(action.float()))x = torch.relu( self.head_q1_bf(torch.cat([x, act1], dim=-1).float()))return self.head_q1(x) 

2.3 TD3算法简单调整

  1. policy_noise: 分布调整为(mean=0, std=每个维度动作范围) * self.policy_noise
  2. expl_noise: 分布调整为(mean=0, std=每个维度动作范围) * self.train_noise

3、训练

整体训练脚本可以看笔者的github test_TD3.py : CarRacing_TD3_test()

  1. 对训练做了一些调整: 在训练的过程中增加测试阶段:每隔test_ep_freq进行测试
  2. 基于多次测试的奖励均值进行最佳模型参数保存
def CarRacing_TD3_test():env_name = 'CarRacing-v2'gym_env_desc(env_name)env = gym.make(env_name)env = FrameStack(ResizeObservation(GrayScaleObservation(CarV2SkipFrame(env, skip=5)), shape=84), num_stack=4)print("gym.__version__ = ", gym.__version__ )path_ = os.path.dirname(__file__)cfg = Config(env, # 环境参数save_path=os.path.join(path_, "test_models" ,'TD3_CarRacing-v2_test2-3'), seed=42,# 网络参数actor_hidden_layers_dim=[128], # 256critic_hidden_layers_dim=[128],# agent参数actor_lr=2.5e-4, #5.5e-5,critic_lr=1e-3, #7.5e-4,  gamma=0.99,# 训练参数num_episode=15000,sample_size=128,# 环境复杂多变,需要保存多一些bufferoff_buffer_size=1024*100,  off_minimal_size=256,max_episode_rewards=50000,max_episode_steps=1200, # 200# agent 其他参数TD3_kwargs={'CNN_env_flag': 1,'pic_shape': env.observation_space.shape,"env": env,'action_low': env.action_space.low,'action_high': env.action_space.high,# soft update parameters'tau': 0.05, # trick2: Delayed Policy Update'delay_freq': 1,# trick3: Target Policy Smoothing'policy_noise': 0.2,'policy_noise_clip': 0.5,# exploration noise'expl_noise': 0.5,# 探索的 noise 指数系数率减少 noise = expl_noise * expl_noise_exp_reduce_factor^t'expl_noise_exp_reduce_factor':  1 - 1e-4})agent = TD3(state_dim=cfg.state_dim,actor_hidden_layers_dim=cfg.actor_hidden_layers_dim,critic_hidden_layers_dim=cfg.critic_hidden_layers_dim,action_dim=cfg.action_dim,actor_lr=cfg.actor_lr,critic_lr=cfg.critic_lr,gamma=cfg.gamma,TD3_kwargs=cfg.TD3_kwargs,device=cfg.device)agent.train()train_off_policy(env, agent, cfg, done_add=False, train_without_seed=True, wandb_flag=False, test_ep_freq=100)agent.load_model(cfg.save_path)agent.eval()env = gym.make(env_name, render_mode='human') # env = FrameStack(ResizeObservation(GrayScaleObservation(CarV2SkipFrame(env, skip=5)), shape=84), num_stack=4)play(env, agent, cfg, episode_count=2)

4、训练结果观察及后续工作

由于上传大小限制5MB, 所以对较多直线部分进行了裁剪

最终训练的时候发现会突然陷入低分状态,可以考虑间隔n(可以设置较大比如2000)个episode和最佳的reward比较,分数低于x%个百分点,就重新载入最佳参数,以继续训练。

在这里插入图片描述

这篇关于强化学习_06_pytorch-TD3实践(CarRacing-v2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542751

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优