遍历像素的十四种方式、颜色空间缩减

2023-12-27 09:08

本文主要是介绍遍历像素的十四种方式、颜色空间缩减,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include<opencv2\opencv.hpp>
#include<iostream>using namespace cv;
using namespace std;#define NTESTS 14
#define NITERATIONS 20//----------------------------------------- 【方法一】-------------------------------------------
// 说明:利用.ptr 和 []
//-------------------------------------------------------------------------------------------------
void colorReduce0(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------data[i] = data[i] / div*div + div / 2;//-------------结束像素处理------------------------} //单行处理结束                  }
}
//-----------------------------------【方法二】-------------------------------------------------
// 说明:利用 .ptr 和 * ++ 
//-------------------------------------------------------------------------------------------------
void colorReduce1(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------*data++ = *data / div*div + div / 2;//-------------结束像素处理------------------------} //单行处理结束              }
}
//-----------------------------------------【方法三】-------------------------------------------
// 说明:利用.ptr 和 * ++ 以及模操作
//-------------------------------------------------------------------------------------------------
void colorReduce2(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------int v = *data;*data++ = v - v%div + div / 2;//-------------结束像素处理------------------------} //单行处理结束                   }
}
//----------------------------------------【方法四】---------------------------------------------
// 说明:利用.ptr 和 * ++ 以及位操作
//----------------------------------------------------------------------------------------------------
void colorReduce3(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 对于 div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------}  //单行处理结束            }
}
//----------------------------------------【方法五】----------------------------------------------
// 说明:利用指针算术运算
//---------------------------------------------------------------------------------------------------
void colorReduce4(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));int step = image.step; //有效宽度//掩码值uchar mask = 0xFF << n; // e.g. 对于 div=16, mask= 0xF0//获取指向图像缓冲区的指针uchar *data = image.data;for (int j = 0; j<nl; j++){for (int i = 0; i<nc; i++){//-------------开始处理每个像素-------------------*(data + i) = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束              data += step;  // next line}
}
//---------------------------------------【方法六】----------------------------------------------
// 说明:利用 .ptr 和 * ++以及位运算、image.cols * image.channels()
//-------------------------------------------------------------------------------------------------
void colorReduce5(Mat &image, int div = 64) {int nl = image.rows; //行数int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 例如div=16, mask= 0xF0for (int j = 0; j<nl; j++){uchar* data = image.ptr<uchar>(j);for (int i = 0; i<image.cols * image.channels(); i++){//-------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束            }
}
// -------------------------------------【方法七】----------------------------------------------
// 说明:利用.ptr 和 * ++ 以及位运算(continuous)
//-------------------------------------------------------------------------------------------------
void colorReduce6(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols * image.channels(); //每行元素的总元素数量if (image.isContinuous()){//无填充像素nc = nc*nl;nl = 1;  // 为一维数列}int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//-------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束                   }
}
//------------------------------------【方法八】------------------------------------------------
// 说明:利用 .ptr 和 * ++ 以及位运算 (continuous+channels)
//-------------------------------------------------------------------------------------------------
void colorReduce7(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols; //列数if (image.isContinuous()){//无填充像素nc = nc*nl;nl = 1;  // 为一维数组}int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//-------------开始处理每个像素-------------------*data++ = *data&mask + div / 2;*data++ = *data&mask + div / 2;*data++ = *data&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束                    }
}
// -----------------------------------【方法九】 ------------------------------------------------
// 说明:利用Mat_ iterator
//-------------------------------------------------------------------------------------------------
void colorReduce8(Mat &image, int div = 64) {//获取迭代器Mat_<Vec3b>::iterator it = image.begin<Vec3b>();Mat_<Vec3b>::iterator itend = image.end<Vec3b>();for (; it != itend; ++it) {//-------------开始处理每个像素-------------------(*it)[0] = (*it)[0] / div*div + div / 2;(*it)[1] = (*it)[1] / div*div + div / 2;(*it)[2] = (*it)[2] / div*div + div / 2;//-------------结束像素处理------------------------}//单行处理结束  
}
//-------------------------------------【方法十】-----------------------------------------------
// 说明:利用Mat_ iterator以及位运算
//-------------------------------------------------------------------------------------------------
void colorReduce9(Mat &image, int div = 64) {// div必须是2的幂int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如 div=16, mask= 0xF0// 获取迭代器Mat_<Vec3b>::iterator it = image.begin<Vec3b>();Mat_<Vec3b>::iterator itend = image.end<Vec3b>();//扫描所有元素for (; it != itend; ++it){//-------------开始处理每个像素-------------------(*it)[0] = (*it)[0] & mask + div / 2;(*it)[1] = (*it)[1] & mask + div / 2;(*it)[2] = (*it)[2] & mask + div / 2;//-------------结束像素处理------------------------}//单行处理结束  
}
//------------------------------------【方法十一】---------------------------------------------
// 说明:利用Mat Iterator_
//-------------------------------------------------------------------------------------------------
void colorReduce10(Mat &image, int div = 64) {//获取迭代器Mat_<Vec3b> cimage = image;Mat_<Vec3b>::iterator it = cimage.begin();Mat_<Vec3b>::iterator itend = cimage.end();for (; it != itend; it++) {//-------------开始处理每个像素-------------------(*it)[0] = (*it)[0] / div*div + div / 2;(*it)[1] = (*it)[1] / div*div + div / 2;(*it)[2] = (*it)[2] / div*div + div / 2;//-------------结束像素处理------------------------}
}
//--------------------------------------【方法十二】--------------------------------------------
// 说明:利用动态地址计算配合at
//-------------------------------------------------------------------------------------------------
void colorReduce11(Mat &image, int div = 64) {int nl = image.rows; //行数int nc = image.cols; //列数for (int j = 0; j<nl; j++){for (int i = 0; i<nc; i++){-------------开始处理每个像素-------------------image.at<Vec3b>(j, i)[0] =image.at<Vec3b>(j, i)[0] / div*div + div / 2;image.at<Vec3b>(j, i)[1] =image.at<Vec3b>(j, i)[1] / div*div + div / 2;image.at<Vec3b>(j, i)[2] =image.at<Vec3b>(j, i)[2] / div*div + div / 2;-------------结束像素处理------------------------} //单行处理结束                 }
}
//----------------------------------【方法十三】----------------------------------------------- 
// 说明:利用图像的输入与输出
//-------------------------------------------------------------------------------------------------
void colorReduce12(const Mat &image, //输入图像Mat &result,      // 输出图像int div = 64) {int nl = image.rows; //行数int nc = image.cols; //列数//准备好初始化后的Mat给输出图像result.create(image.rows, image.cols, image.type());//创建无像素填充的图像nc = nc*nl;nl = 1;  //单维数组int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g.比如div=16, mask= 0xF0for (int j = 0; j<nl; j++) {uchar* data = result.ptr<uchar>(j);const uchar* idata = image.ptr<uchar>(j);for (int i = 0; i<nc; i++) {//-------------开始处理每个像素-------------------*data++ = (*idata++)&mask + div / 2;*data++ = (*idata++)&mask + div / 2;*data++ = (*idata++)&mask + div / 2;//-------------结束像素处理------------------------} //单行处理结束                   }
}
//--------------------------------------【方法十四】------------------------------------------- 
// 说明:利用操作符重载
//-------------------------------------------------------------------------------------------------
void colorReduce13(Mat &image, int div = 64) {int n = static_cast<int>(log(static_cast<double>(div)) / log(2.0));//掩码值uchar mask = 0xFF << n; // e.g. 比如div=16, mask= 0xF0//进行色彩还原image = (image&Scalar(mask, mask, mask)) + Scalar(div / 2, div / 2, div / 2);
}
//-----------------------------------【ShowHelpText( )函数】-----------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{//输出欢迎信息和OpenCV版本printf("\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n");printf("\n\n\t\t\t此为本书OpenCV2版的第24个配套示例程序\n");printf("\n\n\t\t\t   当前使用的OpenCV版本为:" CV_VERSION);printf("\n\n  ----------------------------------------------------------------------------\n");printf("\n\n正在进行存取操作,请稍等……\n\n");
}
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main()
{int64 t[NTESTS], tinit;Mat image0;Mat image1;Mat image2;system("color 4F");ShowHelpText();image0 = imread("1.png");if (!image0.data)return 0;//时间值设为0for (int i = 0; i<NTESTS; i++)t[i] = 0;// 多次重复测试int n = NITERATIONS;for (int k = 0; k<n; k++){cout << k << " of " << n << endl;image1 = imread("1.png");//【方法一】利用.ptr 和 []tinit = getTickCount();colorReduce0(image1);t[0] += getTickCount() - tinit;//【方法二】利用 .ptr 和 * ++ image1 = imread("1.png");tinit = getTickCount();colorReduce1(image1);t[1] += getTickCount() - tinit;//【方法三】利用.ptr 和 * ++ 以及模操作image1 = imread("1.png");tinit = getTickCount();colorReduce2(image1);t[2] += getTickCount() - tinit;//【方法四】 利用.ptr 和 * ++ 以及位操作image1 = imread("1.png");tinit = getTickCount();colorReduce3(image1);t[3] += getTickCount() - tinit;//【方法五】 利用指针的算术运算image1 = imread("1.png");tinit = getTickCount();colorReduce4(image1);t[4] += getTickCount() - tinit;//【方法六】利用 .ptr 和 * ++以及位运算、image.cols * image.channels()image1 = imread("1.png");tinit = getTickCount();colorReduce5(image1);t[5] += getTickCount() - tinit;//【方法七】利用.ptr 和 * ++ 以及位运算(continuous)image1 = imread("1.png");tinit = getTickCount();colorReduce6(image1);t[6] += getTickCount() - tinit;//【方法八】利用 .ptr 和 * ++ 以及位运算 (continuous+channels)image1 = imread("1.png");tinit = getTickCount();colorReduce7(image1);t[7] += getTickCount() - tinit;//【方法九】 利用Mat_ iteratorimage1 = imread("1.png");tinit = getTickCount();colorReduce8(image1);t[8] += getTickCount() - tinit;//【方法十】 利用Mat_ iterator以及位运算image1 = imread("1.png");tinit = getTickCount();colorReduce9(image1);t[9] += getTickCount() - tinit;//【方法十一】利用Mat Iterator_image1 = imread("1.png");tinit = getTickCount();colorReduce10(image1);t[10] += getTickCount() - tinit;//【方法十二】 利用动态地址计算配合atimage1 = imread("1.png");tinit = getTickCount();colorReduce11(image1);t[11] += getTickCount() - tinit;//【方法十三】 利用图像的输入与输出image1 = imread("1.png");tinit = getTickCount();Mat result;colorReduce12(image1, result);t[12] += getTickCount() - tinit;image2 = result;//【方法十四】 利用操作符重载image1 = imread("1.png");tinit = getTickCount();colorReduce13(image1);t[13] += getTickCount() - tinit;//------------------------------}//输出图像   imshow("原始图像", image0);imshow("结果", image2);imshow("图像结果", image1);// 输出平均执行时间cout << endl << "-------------------------------------------" << endl << endl;cout << "\n【方法一】利用.ptr 和 []的方法所用时间为 " << 1000.*t[0] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法二】利用 .ptr 和 * ++ 的方法所用时间为" << 1000.*t[1] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法三】利用.ptr 和 * ++ 以及模操作的方法所用时间为" << 1000.*t[2] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法四】利用.ptr 和 * ++ 以及位操作的方法所用时间为" << 1000.*t[3] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法五】利用指针算术运算的方法所用时间为" << 1000.*t[4] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法六】利用 .ptr 和 * ++以及位运算、channels()的方法所用时间为" << 1000.*t[5] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法七】利用.ptr 和 * ++ 以及位运算(continuous)的方法所用时间为" << 1000.*t[6] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法八】利用 .ptr 和 * ++ 以及位运算 (continuous+channels)的方法所用时间为" << 1000.*t[7] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法九】利用Mat_ iterator 的方法所用时间为" << 1000.*t[8] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十】利用Mat_ iterator以及位运算的方法所用时间为" << 1000.*t[9] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十一】利用Mat Iterator_的方法所用时间为" << 1000.*t[10] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十二】利用动态地址计算配合at 的方法所用时间为" << 1000.*t[11] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十三】利用图像的输入与输出的方法所用时间为" << 1000.*t[12] / getTickFrequency() / n << "ms" << endl;cout << "\n【方法十四】利用操作符重载的方法所用时间为" << 1000.*t[13] / getTickFrequency() / n << "ms" << endl;waitKey();return 0;
}

这篇关于遍历像素的十四种方式、颜色空间缩减的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542613

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

Vue3视频播放组件 vue3-video-play使用方式

《Vue3视频播放组件vue3-video-play使用方式》vue3-video-play是Vue3的视频播放组件,基于原生video标签开发,支持MP4和HLS流,提供全局/局部引入方式,可监听... 目录一、安装二、全局引入三、局部引入四、基本使用五、事件监听六、播放 HLS 流七、更多功能总结在 v

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

java读取excel文件为base64实现方式

《java读取excel文件为base64实现方式》文章介绍使用ApachePOI和EasyExcel处理Excel文件并转换为Base64的方法,强调EasyExcel适合大文件且内存占用低,需注意... 目录使用 Apache POI 读取 Excel 并转换为 Base64使用 EasyExcel 处

Spring Boot中获取IOC容器的多种方式

《SpringBoot中获取IOC容器的多种方式》本文主要介绍了SpringBoot中获取IOC容器的多种方式,包括直接注入、实现ApplicationContextAware接口、通过Spring... 目录1. 直接注入ApplicationContext2. 实现ApplicationContextA

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日