工具系列:TimeGPT_(2)使用外生变量时间序列预测

2023-12-27 04:52

本文主要是介绍工具系列:TimeGPT_(2)使用外生变量时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • TimeGPT使用外生变量时间序列预测
    • 导入相关工具包
    • 预测欧美国家次日电力价格案例

TimeGPT使用外生变量时间序列预测

外生变量在时间序列预测中非常重要,因为它们提供了可能影响预测的额外信息。这些变量可以包括假日标记、营销支出、天气数据或与你正在预测的时间序列数据相关的任何其他外部数据。

例如,如果你正在预测冰淇淋销售额,温度数据可以作为一个有用的外生变量。在炎热的天气里,冰淇淋销售额可能会增加。

要在TimeGPT中加入外生变量,你需要将时间序列数据中的每个点与相应的外部数据配对。

导入相关工具包


# Importing the colab_badge module from the nixtlats.utils package
from nixtlats.utils import colab_badge
# 导入load_dotenv函数,用于加载.env文件中的环境变量
from dotenv import load_dotenv
# 导入load_dotenv函数,用于加载环境变量
load_dotenv()
True

import pandas as pd
from nixtlats import TimeGPT
/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom tqdm.autonotebook import tqdm
# 定义TimeGPT对象,并传入一个参数token,用于身份验证
# 如果没有提供token参数,则默认使用os.environ.get("TIMEGPT_TOKEN")获取token
timegpt = TimeGPT(token = 'my_token_provided_by_nixtla'
)
# 导入TimeGPT模型timegpt = TimeGPT()  # 创建TimeGPT对象的实例

预测欧美国家次日电力价格案例

让我们看一个关于预测次日电力价格的例子。以下数据集包含了欧洲和美国五个市场的每小时电力价格(y列),这些市场由unique_id列进行标识。从Exogenous1day_6的列是TimeGPT用来预测价格的外生变量。

# 从指定的URL读取csv文件,并将其存储在DataFrame对象df中
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-with-ex-vars.csv')# 显示DataFrame对象df的前几行数据
df.head()
unique_iddsyExogenous1Exogenous2day_0day_1day_2day_3day_4day_5day_6
0BE2016-12-01 00:00:0072.0061507.071066.00.00.00.01.00.00.00.0
1BE2016-12-01 01:00:0065.8059528.067311.00.00.00.01.00.00.00.0
2BE2016-12-01 02:00:0059.9958812.067470.00.00.00.01.00.00.00.0
3BE2016-12-01 03:00:0050.6957676.064529.00.00.00.01.00.00.00.0
4BE2016-12-01 04:00:0052.5856804.062773.00.00.00.01.00.00.00.0

为了生成预测,我们还需要添加外生变量的未来值。让我们读取这个数据集。在这种情况下,我们希望预测未来24个步骤,因此每个“unique_id”将有24个观察值。

# 从GitHub上读取电力短期未来外部变量数据集
future_ex_vars_df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-future-ex-vars.csv')# 打印数据集的前五行
future_ex_vars_df.head()
unique_iddsExogenous1Exogenous2day_0day_1day_2day_3day_4day_5day_6
0BE2016-12-31 00:00:0064108.070318.00.00.00.00.00.01.00.0
1BE2016-12-31 01:00:0062492.067898.00.00.00.00.00.01.00.0
2BE2016-12-31 02:00:0061571.068379.00.00.00.00.00.01.00.0
3BE2016-12-31 03:00:0060381.064972.00.00.00.00.00.01.00.0
4BE2016-12-31 04:00:0060298.062900.00.00.00.00.00.01.00.0

让我们调用forecast方法,添加这些信息:

# 使用timegpt模型对数据进行预测
# 参数说明:
# - df: 历史数据的DataFrame
# - X_df: 未来外部变量的DataFrame
# - h: 预测的时间步长
# - level: 置信水平
timegpt_fcst_ex_vars_df = timegpt.forecast(df=df, X_df=future_ex_vars_df, h=24, level=[80, 90])# 打印预测结果的前几行
timegpt_fcst_ex_vars_df.head()
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
INFO:nixtlats.timegpt:Inferred freq: H
INFO:nixtlats.timegpt:Calling Forecast Endpoint...
unique_iddsTimeGPTTimeGPT-lo-90TimeGPT-lo-80TimeGPT-hi-80TimeGPT-hi-90
0BE2016-12-31 00:00:0038.86176233.82107334.36866943.35485443.902450
1BE2016-12-31 01:00:0035.38210230.01459431.49332239.27088240.749610
2BE2016-12-31 02:00:0033.81142526.65882128.54308739.07976440.964029
3BE2016-12-31 03:00:0031.70747524.89620526.81879536.59615538.518745
4BE2016-12-31 04:00:0030.31647521.12514324.43214836.20080139.507807
# 导入必要的模块和函数# 使用timegpt.plot函数绘制时间序列预测结果的图表
# 参数1:df[['unique_id', 'ds', 'y']],表示要绘制的时间序列数据,包括唯一标识符、时间戳和目标变量
# 参数2:timegpt_fcst_ex_vars_df,表示时间序列预测的额外变量数据
# 参数3:max_insample_length=365,表示用于训练模型的最大历史数据长度为365天
# 参数4:level=[80, 90],表示绘制置信区间的水平,这里设置为80%和90%
# 返回:绘制好的时间序列预测结果图表
timegpt.plot(df[['unique_id', 'ds', 'y']], timegpt_fcst_ex_vars_df, max_insample_length=365, level=[80, 90], 
)

我们还可以获得特征的重要性。

# 绘制水平条形图
timegpt.weights_x.plot.barh(x='features', y='weights')
<Axes: ylabel='features'>

您还可以使用CountryHolidays类添加国家假期。

# 导入nixtlats.date_features模块中的CountryHolidays类from nixtlats.date_features import CountryHolidays
# 导入所需的模块和函数# 使用timegpt模型对给定的数据进行预测
# 参数:
# - df: 历史数据的DataFrame,包含时间序列数据
# - X_df: 未来外部变量的DataFrame,包含与时间序列相关的外部变量
# - h: 预测的时间步长,即预测未来多少个时间点的值
# - level: 置信水平的列表,用于计算置信区间
# - date_features: 日期特征的列表,用于考虑特殊的日期效应,如假期等
# 返回值:
# - timegpt_fcst_ex_vars_df: 预测结果的DataFrame,包含预测值和置信区间
timegpt_fcst_ex_vars_df = timegpt.forecast(df=df, X_df=future_ex_vars_df, h=24, level=[80, 90], date_features=[CountryHolidays(['US'])]
)
# 使用timegpt模型的weights_x属性绘制水平条形图
# 参数:
# - x: 水平条形图的x轴数据,即特征名称
# - y: 水平条形图的y轴数据,即特征权重值
timegpt.weights_x.plot.barh(x='features', y='weights')
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
INFO:nixtlats.timegpt:Inferred freq: H
INFO:nixtlats.timegpt:Calling Forecast Endpoint...<Axes: ylabel='features'>

这篇关于工具系列:TimeGPT_(2)使用外生变量时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/541928

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV