学习中的多种概率分布

2023-12-26 21:58
文章标签 多种 学习 概率分布

本文主要是介绍学习中的多种概率分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概率分布是随机变量所有可能结果及其相应概率的列表。

概率分布的目的:反向推演出某一个事态(随机变量)发生的概率,为决策提供依据,掌控事态变化的关键。

 

下图是多种概率分布的联系。

 

其中共轭(conjugate)表示的是互为共轭的概率分布;

Multi-Class 表示随机变量多于 2 个;

N Times 表示我们还会考虑先验分布 P(X)。

 

共轭的意思

          共轭分布(conjugate distribution)的概率中一共涉及到三个分布:先验、似然和后验,如果由先验分布和似然分布所确定的后验分布与该先验分布属于同一种类型的分布,则该先验分布为似然分布的共轭分布,也称为共轭先验。 

例如:

          在贝叶斯概念理论中,如果后验分布 p(θ | x) 与先验分布 p(θ) 是相同的概率分布族,那么后验分布可以称为共轭分布,先验分布可以称为似然函数的共轭先验。

 

概率分布和特性

1、均匀分布(连续型)

           均匀分布是指闭区间 [a, b] 内的随机变量,且每一个变量出现的概率是相同的。

2. 伯努利分布(离散型)

       1、Bernoulli分布不考虑先验概率P(X)。因此,如果我们优化到最大的可能性,我们将很容易被过度拟合。

       2、我们用二元交叉熵对二进制分类进行分类。它的形式类似于取Bernoulli分布的负对数。

二元交叉熵的一般表达式:

                                       

 3. 二项分布(离散型)

        1、参数n和p的二项分布是n个独立实验序列中成功次数的离散概率分布。

        2、二项分布是通过指定预先选择的数目来考虑先验概率的分布。

 

二项分布就是重复n次独立的伯努利试验。 

 4.多贝努利分布,范畴分布(离散)

        1、多伯努利称为范畴分布,是一种概率扩展超过2

        2、交叉缠绕具有相同的形式,就像采取负对数的多伯努利分布。

5.多项式分布(离散),

范畴分布是多项式分布(Multinomial distribution)的一个特例,它与范畴分布的关系就像伯努利分布与二项分布之间的关系。

        1、多项式分布与伯努利分布与二项分布的关系相同。

6.β分布(连续)

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,它指一组定义在 (0,1) 区间的连续概率分布。均匀分布是 Beta 分布的一个特例,即在 alpha=1、 beta=1 的分布。

     1、β分布共轭于二项式分布和Bernoulli分布。

     2、通过构造,我们可以更容易地利用已知的先验分布来得到后验分布。

     3、当β分布满足特殊情况时,均匀分布是相同的(alpha=1,β=1)。

7. 狄利克雷分布(连续型)

       狄利克雷分布(Dirichlet distribution)是一类在实数域以正单纯形(standard simplex)为支撑集(support)的高维连续概率分布,是 Beta 分布在高维情形的推广。在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。

       1、Dirichlet分布与多项式分布共轭。

       2、如果k=2时,则为Beta分布。

8.伽马分布(连续)

      1、伽马分布将是β分布,如果Gamma(a,1) / Gamma(a,1) + Gamma(b,1)Beta(a,b).

      2、Gamma 分布是统计学中的常见连续型分布,指数分布、卡方分布和 Erlang 分布都是它的特例。

 

9. 指数分布(连续型)

      指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔等等。当 alpha 等于 1 时,指数分布就是 Gamma 分布的特例。

10. 高斯分布(连续型)

       高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。

        当正态分布的均值为 0、方差为 1 的时候,它就是标准正态分布,这也是我们最常用的分布。

11. 卡方分布(连续型)

       简单而言,卡方分布(Chi-squared)可以理解为,k 个独立的标准正态分布变量的平方和服从自由度为 k 的卡方分布。卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。

12. 学生 t-分布

      学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。t 分布也是对称的倒钟型分布,就如同正态分布一样,但它的长尾占比更多,这意味着 t 分布更容易产生远离均值的样本。

 


 

 

这篇关于学习中的多种概率分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/540916

相关文章

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1