实验一:求整数和、铺地板和Hanoi塔等问题的求解

2023-12-26 09:59

本文主要是介绍实验一:求整数和、铺地板和Hanoi塔等问题的求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验一:求整数和、铺地板和Hanoi塔等问题的求解

一、问题描述

  1. 整数求和: 从1到n之间的整数相加,和是多少? 用C语言实现函数,输入n,返回和;
  2. 铺地板问题: 在2×n的矩形中铺入1×2大小的地板,求其有多少种铺法;
  3. Hanoi塔问题: 一次只能移动一层,大的不能放在小的上面。可以使用临时场所 暂存中间结果。移动n层的塔,总的移动次数是多少?;

二、实验描述

  1. 用C语言编程实现求整数平方和、铺地板和Hanoi等问题的求解;
  2. 在程序中加入clock()来计算求解时间;
  3. 使用不同的输入值得到对应的时间值;
  4. 分析算法的时间复杂度并与测量结果比较;
  5. 如果存在差异,分析原因;

三、实验设计

  1. 求整数平方和问题:
    迭代:
    1) 定义函数sum(int n),利用for循环迭代求解前n项整数平方和
    2) 在main函数中定义int型变量j,通过for循环,以j*100作为参数调用sum函数,让j递增,依次计算前1000、2000、3000,…10000的平方和
    3) 定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4) 打印(double)(end_time-start_time)
    5) 重复5次实验,取平均值
    6) 记录实验数据并绘制Excel图表
  2. 铺地板问题:
    1) 定义函数flour(int n),设定n=1与n=2时的基准情形(flour(1)=1,flour(2)=2),利用递归式flour(n)=flour(n-1)+flour(n-2)求解铺地板的铺法
    2)在main函数中定义int型变量j,通过for循环,以j作为参数调用flour函数,让j递增,依次计算n为30、40、50,…39的铺法
    3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4)打印(double)(end_time-start_time)
    5)重复5次实验,取平均值
    6)记录实验数据并绘制图表
    3.Hanoi塔问题:
    1)定义函数HanoiTower(int n,char source,char, temp,char target),设定n=1时为基准情形,利用递归式S(n)=2*S(n-1)+1求解n层塔的移动次数(S(n)为n层塔的移动次数)
    2)在main函数中定义int型变量n并通过scanf()操作得到值作为求Hanoi塔层数的函数参数
    3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4)打印(double)(end_time-start_time)
    5)重复5次实验,取平均值
    6)记录实验数据并绘制图表

四、实验实现过程

  1. 求整数平方和问题:
    迭代:
    1) 定义函数sum(int n),利用for循环迭代求解前n项整数平方和
    2) 在main函数中定义int型变量j,通过for循环,以j*100作为参数调用sum函数,让j递增,依次计算前1000、2000、3000,…10000的平方和
    3) 定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4) 打印(double)(end_time-start_time)
    5) 重复5次实验,取平均值
    6) 记录实验数据并绘制Excel图表
#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>void sum(int n){int res = 0;for(int i=1;i<=n;i++){res = res+i*i;}
}
int main()
{clock_t start_time,end_time;for(int j=1;j<=10;j++){start_time=clock();for(int k=0;k<10000;k++){sum(j*1000);}end_time=clock();printf("%f\n",(double)(end_time-start_time));}return 0;
}
  1. 铺地板问题
    1) 定义函数flour(int n),设定n=1与n=2时的基准情形(flour(1)=1,flour(2)=2),利用递归式flour(n)=flour(n-1)+flour(n-2)求解铺地板的铺法
    2)在main函数中定义int型变量j,通过for循环,以j作为参数调用flour函数,让j递增,依次计算n为30、40、50,…39的铺法
    3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
    4)打印(double)(end_time-start_time)
    5)重复5次实验,取平均值
    6)记录实验数据并绘制图表
#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>int flour(int n){if((n==1)||(n==2)){return 1;}else{return (flour(n-1)+flour(n-2));}
}
int main()
{clock_t start_time,end_time;for(int j=30;j<40;j++){start_time=clock();flour(j);end_time=clock();printf("%f\n",(double)(end_time-start_time));}return 0;
}

3.Hanoi塔问题:
1)定义函数HanoiTower(int n,char source,char, temp,char target),设定n=1时为基准情形,利用递归式S(n)=2*S(n-1)+1求解n层塔的移动次数(S(n)为n层塔的移动次数)
2)在main函数中定义int型变量n并通过scanf()操作得到值作为求Hanoi塔层数的函数参数
3)定义clock_t类型变量start_time和end_time,调用clock()函数来记录函数开始和结束的执行时间
4)打印(double)(end_time-start_time)
5)重复5次实验,取平均值
6)记录实验数据并绘制图表

#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>//int i=0;
void HanoiTower(int n,char source,char temp,char target){if(n==1){printf("%c->%c\n",source,target);//i++;}else{HanoiTower(n-1,source,target,temp);printf("%c->%c\n",source,target);//i++;HanoiTower(n-1,temp,source,target);}
}
int main()
{int n;clock_t start_time,end_time;char source='A',temp='B',target='C';scanf("%d",&n);start_time=clock();HanoiTower(n,source,temp,target);end_time=clock();printf("%f",(double)(end_time-start_time));//printf("总移动次数为:%d\n",i);return 0;
}

五、实验结果

  1. 求整数平方和问题图表
    在这里插入图片描述
    在这里插入图片描述
  2. 铺地板问题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  3. Hanoi问题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

六、实验结论

  1. 算法时间复杂度的分析
    对于迭代法求前n个整数的平方和,其时间复杂度T(n)=O(n);对于递归法求铺地板,其时间复杂度T(n)=T(n-1)+T(n-2),T(1)=T(2)=1,T(n)=O(2n); 对于Hanoi塔问题使用递归,有T(n)=2×T(n-1)+1,T(1)=1,消去系数和常量可得T(n)=O(2n);

  2. 与测量结果进行比对
    求前n个整数的平方和问题得到的结果曲线为一条直线,说明n与时间t成线性关系,与算法的时间复杂度分析所得的T(n)=O(n)吻合;铺地板问题和Hanoi塔问题的结果曲线中,n与log(t)大致成线性关系,与时间复杂度分析吻合。曲线存在误差可能与CPU的内存分配与运行速度有关,n呈指数形式增长,递归占用的内存也迅速增加,大到一定规模时,必将影响运行时间

这篇关于实验一:求整数和、铺地板和Hanoi塔等问题的求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538990

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复