Win10系统搭建最新Anaconda(3)+python(3.8)+tensorflow-gpu(2.7)+CUDA(11.5)+cuDNN(8.1)环境的详细流程

本文主要是介绍Win10系统搭建最新Anaconda(3)+python(3.8)+tensorflow-gpu(2.7)+CUDA(11.5)+cuDNN(8.1)环境的详细流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Anaconda安装

1. 下载安装

下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
镜像使用帮助:https://mirror.tuna.tsinghua.edu.cn/help/anaconda/
参考教程(简书,很详细):https://www.jianshu.com/p/62f155eb6ac5

2. 验证安装成功

终端输入:conda list

在这里插入图片描述

在终端中输入anaconda-navigator。如果Anaconda被成功安装,则Anaconda Navigator将会被启动。

3. 修改镜像

Windows 用户无法直接创建名为 .condarc 的文件,可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改
生成文件路径在:C:\Users\UserName

在这里插入图片描述

channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

二、Windows下安装CPU版本的tensorflow

终端是:Anaconda Prowershell Prompt

1. 搭建python环境

在Anaconda Prompt中,用Anaconda3创建一个python的环境,环境名称为tensorflow ,输入下面命令:

  • 查看python版本在这里插入图片描述
    输入命令:conda create -n tensorflow python=3.8.8
  • 查看环境
    运行 开始—>Anaconda3—>Anaconda Navigator,点击左侧的Environments,可以看到tensorflow的环境已经创建好了。
    在这里插入图片描述
  • 打开与关闭tensorflow环境
    在这里插入图片描述

2. 安装TensorFlow

CPU版本-命令是:pip install --ignore-installed --upgrade tensorflow
在这里插入图片描述

.whl下载地址
https://pypi.org/project/tensorflow/#files

使用镜像下载pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade --ignore-installed tensorflow

速度快的飞起~

3.测试代码

注意:这里安装的是TF2.0版本,因此使用TF1.x的版本测试代码会出现问题,可修改后使用(TF2.0中已经移除了session这一功能)

import tensorflow as tf
tf.compat.v1.disable_eager_execution() #保证sess.run()能够正常运行
hello = tf.constant('Hello, TensorFlow!')  #初始化一个TensorFlow的常量
#sess = tf.Session()  #启动一个会话 TensorFlow1.x版本
sess =  tf.compat.v1.Session()
print(sess.run(hello))  

在这里插入图片描述
可能出现的问题
输入import tensorflow as tf
提示No module named 'tensorflow'问题
输入conda list 查看
在这里插入图片描述
其中没有tensorflow 和 numpy包,需要安装
在tensorflow环境下conda install tensorflow
在查看conda list 已经存在tensorflow 和 numpy包

运行测试程序
在这里插入图片描述


三、Windows下安装GPU版本的TensorFlow

参考TensorFlow官方文档:https://tensorflow.google.cn/install/source_windows

1. 安装CUDA

查看机器的显卡并检查显卡是否支持CUDA

官方的安装介绍文档:https://docs.nvidia.com/cuda/
Windows
Linux

**IMP!!!先检查自己的CPU是否为安培架构,如果是安培架构(RTX30代)**可以选择CUDA11以上,如果是非安培架构推荐使用CUDA10.2,性能更优。此处自己初次安装,机器是RTX2060,非安培架构(图灵架构),但是安装了CUDA11.5(以下部分参考图示有些是V10.2,操作过程均相同)

(此处推荐一个很方便的截图工具Snipastehttps://zh.snipaste.com/

windows winkey+x键调出此界面,打开设备管理器

在这里插入图片描述

在这里插入图片描述

打开NVIDIA网址查看支持情况https://developer.nvidia.com/zh-cn/cuda-gpus

在这里插入图片描述
结论:此机器的显卡支持CUDA

下载安装CUDA

最新版本(11.5.1)下载网址:https://developer.nvidia.com/cuda-downloads
以往的版本下载网址:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
本地安装CUDA
双击exe->选择解压缩安装程序的暂存目录->安装(依此选择精简—>I understand…
**注意:**安装期间请关闭杀毒软件
在这里插入图片描述

2. 配置cuDNN

官方安装介绍文档:https://docs.nvidia.com/deeplearning/cudnn/install-guide/

下载软件

最新版本网址:https://developer.nvidia.com/zh-cn/cudnn
cuDNN以往的版本:https://developer.nvidia.com/rdp/cudnn-archive
此网站需要注册会员(免费)进行下载,(网站响应较慢,耐心等待)
选择与CUDA相匹配的版本
cuDNN v8.3.0对应CUDA11.5
在这里插入图片描述
在这里插入图片描述
解压cuDNN,并将其文件拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5
如下图(此图是CUDA10.2版本,11.5版本相同):
在这里插入图片描述
配置环境变量
安装好CUDA后,环境变量中已经有CUDA_PATH和CUDA_PATH_Vx.x,并且系统环境变量中也已经添加
在这里插入图片描述
此外还需要在path中添加以下环境变量:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\extras\CUPTI\lib64

安装完成后看一下显卡信息
进入到对应的目录下运行.\deviceQuery.exe
在这里插入图片描述

3.搭建TensorFlow的GPU虚拟环境

安装python

conda create --name tensorflow-gpu python=3.8.8 anaconda
在这里插入图片描述
在这里插入图片描述
启动与关闭TensorFlow-gpu虚拟环境
在这里插入图片描述

安装TensorFlow

在TensorFlow-gpu虚拟环境下安装TensorFlow-gpu版本
命令:pip install tensorflow-gpu
在这里插入图片描述
速度太慢了,4个小时受不了
使用下面的命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow-gpu
安装指定版本的tensorflow-gpu命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==2.3.0
在这里插入图片描述
不到一分钟解决!!!
在这里插入图片描述
此时查看一下Anaconda Navigator中也已经安装完毕!!!
在这里插入图片描述

3. 安装结束进行测试验证

简单验证一下
TensorFlow-gpu虚拟环境下唤醒spyder
在这里插入图片描述

# -*- coding: utf-8 -*-
"""
Spyder EditorThis is a temporary script file.
"""
import tensorflow as tfa = tf.constant([1.0,2.0],name="a")
b = tf.constant([3.0,4.0],name="b")result = a + bprint(result)

在这里插入图片描述
完毕!

遇到问题

CUDA11.5版本 cuDNN8.3.1官方给出的对应版本,测试起来不匹配
可以看一下:

2021-11-27 22:38:54.686294: I tensorflow/stream_executor/cuda/cuda_dnn.cc:366] Loaded cuDNN version 8301
Could not load library cudnn_cnn_infer64_8.dll. Error code 126
Please make sure cudnn_cnn_infer64_8.dll is in your library path!

在这里插入图片描述

网上的类似的问题:https://stackoverflow.com/questions/66355477/could-not-load-library-cudnn-ops-infer64-8-dll-error-code-126-please-make-sure
在这里插入图片描述
在这里插入图片描述
可以参考官方TensorFlow已测试搭建版本
在这里插入图片描述
怎么解决呢?
stackoverflow网址

  1. 路径的问题,前面路径都已经配置,此问题这种方法不适用
  2. 官方给出的版本不一致,目前官方给出的cuDNN v8.3其实和CUDA v11.5不匹配,网友的做法是选择非当前对应版本,比当前版本靠前一些的版本(太坑了,遇到此问题后,我原以为是路径的问题,期间重新安装了CUDA10.2 以及对应的cuDNN版本,添加了对应的变量路径,后没有出现此问题,但遇到tensorflow版本不一致的问题,掉头发……,决定重新安装11.5版本,还是遇到此问题)建议根据TensorFlow官方已测试CUDA和cuDNN对应版本安装,避免踩大坑

在这里插入图片描述
3. 建议根据TensorFlow官方适配的版本安装

博主根据第二点进行安装的CUDA是v11.5版本,选cuDNN是v8.2.1

在这里插入图片描述
运行结果,成功解决此问题:
在这里插入图片描述

4. 安装paddlepaddle-gpu

conda命令下安装:conda install paddlepaddle-gpu==2.2.0 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
在这里插入图片描述
在这里插入图片描述

验证安装是否成功
python环境下输入一下命令:

import paddle
paddle.utils.run_check()

显示:
在这里插入图片描述

结束语

博客的目的一是为了后续自己的学习做一个记录,另一是把自己的操作流程分享出来,方便其他同学们参考,同时自己也参考了多个优秀博主的教程,也算是一个回馈!

这篇关于Win10系统搭建最新Anaconda(3)+python(3.8)+tensorflow-gpu(2.7)+CUDA(11.5)+cuDNN(8.1)环境的详细流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538729

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下