Leetcode 1349. 参加考试的最大学生数(Java + 按行状压暴力 + DP)

2023-12-26 06:45

本文主要是介绍Leetcode 1349. 参加考试的最大学生数(Java + 按行状压暴力 + DP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目
  • 思路
    • Java + 按行状压暴力 + DP:
    • 第 1 步:
    • 第 2 步:
    • 第 3 步:
    • 第 4 步:
  • 复杂度
  • Code

题目

  • Problem: 1349. 参加考试的最大学生数
  • 给你一个 m * n 的矩阵 seats 表示教室中的座位分布。如果座位是坏的(不可用),就用 ‘#’ 表示;否则,用 ‘.’ 表示。
  • 学生可以看到左侧、右侧、左上、右上这四个方向上紧邻他的学生的答卷,但是看不到直接坐在他前面或者后面的学生的答卷。请你计算并返回该考场可以容纳的同时参加考试且无法作弊的 最大 学生人数。
  • 学生必须坐在状况良好的座位上。
  • seats 只包含字符 ‘.’ 和’#’
  • m == seats.length
  • n == seats[i].length
  • 1 <= m <= 8
  • 1 <= n <= 8

思路

Java + 按行状压暴力 + DP:

第 1 步:

  • 首先思考每个好座位选或不选的 DFS 暴力求解,会超时
  • 其次分析题意可知,仅有相邻两行之间有限制,
  • 因此可以想到将行拆开,仅每一行去暴力所有可能,使用 DP 判断相邻两行的限制即可

第 2 步:

  • 每行暴力:
  • 每行遍历从 0 到 (2 ^ n) - 1 的数字 seat,seat 转化为二进制、1 代表有人,
  • isRowUsableSeat 行内满足要求:遍历每个 1 相邻左侧没有 1 且 每个 1 均是好座位,
  • 此 seat 代表该行内部满足条件,

第 3 步:

  • DP 判断两行的限制:
  • 定义状态:dp[i][seat] 代表前 i 行中,第 i 行座位为 seat 时的最大学生数
  • 初始化:dp[0][isRowUsableSeat(seat)] = countOne(seat)(seat 中 1 个个数),代表第一行没有限制
  • 状态转移方程:
    • dp[i][isRowUsableSeat(seat)] = countOne(seat) + max(isCrossUsableSeat(0, seat)?dp[i-1][0]):0 , … , isCrossUsableSeat((2 ^ n) - 1, seat)?dp[i-1][(2 ^ n) - 1]:0)
  • 其中 isCrossUsableSeat(seat1, seat2) 代表两行(seat1-上一行、seat2-下一行)是否满足要求,即 seat2 每个 1 的下标 col、在 seat1 中 col-1 与 col+1 都不存在 1

第 4 步:

  • 预处理所有 isCrossUsableSeat,
  • 由于 i 仅与 i-1 相关,因此使用滚动数组即可

复杂度

时间复杂度:

时间复杂度: O ( ( m + n ) ∗ 2 2 n ) O((m + n) * 2 ^ {2n}) O((m+n)22n)

空间复杂度:

空间复杂度: O ( n ∗ 2 2 n ) O(n * 2 ^ {2n}) O(n22n)

Code

class Solution {/*** Java + 按行状压暴力 + DP:** 第 1 步:* 首先思考每个好座位选或不选的 DFS 暴力求解,会超时* 其次分析题意可知,仅有相邻两行之间有限制,* 因此可以想到将行拆开,仅每一行去暴力所有可能,使用 DP 判断相邻两行的限制即可** 第 2 步:* 每行暴力:* 每行遍历从 0 到 (2 ^ n) - 1 的数字 seat,seat 转化为二进制、1 代表有人,* isRowUsableSeat 行内满足要求:遍历每个 1 相邻左侧没有 1 且 每个 1 均是好座位,* 此 seat 代表该行内部满足条件,** 第 3 步:* DP 判断两行的限制:* 定义状态:dp[i][seat] 代表前 i 行中,第 i 行座位为 seat 时的最大学生数* 初始化:dp[0][isRowUsableSeat(seat)] = countOne(seat)(seat 中 1 个个数),代表第一行没有限制* 状态转移方程:dp[i][isRowUsableSeat(seat)] = countOne(seat) * + max(isCrossUsableSeat(0, seat)?dp[i-1][0]):0 , ... , isCrossUsableSeat((2 ^ n) - 1, seat)?dp[i-1][(2 ^ n) - 1]:0)* 其中 isCrossUsableSeat(seat1, seat2) 代表两行(seat1-上一行、seat2-下一行)是否满足要求,即 seat2 每个 1 的下标 col、在 seat1 中 col-1 与 col+1 都不存在 1** 第 4 步:* 预处理所有 isCrossUsableSeat,* 由于 i 仅与 i-1 相关,因此使用滚动数组即可* 时间复杂度:O((m + n) * 2 ^ 2n),空间复杂度:O(n * 2 ^ 2n)**/public int maxStudents(char[][] seats) {int m = seats.length;int n = seats[0].length;int seatTotal = 1 << n;// 预处理所有 isCrossUsableSeatboolean[][] crossUsableSeat = preCrossUsableSeat(seatTotal);int[][] dp = new int[2][seatTotal];// 初始化for (int j = 0; j < seatTotal; j++) {// 第 0 行满足 isRowUsableSeatif (isRowUsableSeat(seats[0], j)) {dp[0][j] = countOne(j);}}// 状态转移方程:dp[i][isRowUsableSeat(seat)] = countOne(seat) // + max(isCrossUsableSeat(0, seat)?dp[i-1][0]):0 , ... , isCrossUsableSeat((2 ^ n) - 1, seat)?dp[i-1][(2 ^ n) - 1]:0)for (int i = 1; i < m; i++) {for (int j = 0; j < seatTotal; j++) {// 第 i 行内满足条件if (isRowUsableSeat(seats[i], j)) {int countOneJ = countOne(j);for (int k = 0; k < seatTotal; k++) {// 第 i 行与 i-1 行满足条件if (crossUsableSeat[j][k]) {dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + countOneJ);}}}}}int res = 0;for (int j = 0; j < seatTotal; j++) {res = Math.max(res, dp[(m - 1) & 1][j]);}return res;}/*** 遍历每个 1:相邻左侧没有 1 且 每个 1 均是好座位*/private boolean isRowUsableSeat(char[] seats, int seat) {for (int i = 0; (1 << i) <= seat; i++) {if (((1 << i) & seat) > 0) {if (seats[i] == '#' || ((1 << i + 1) & seat) > 0) {return false;}}}return true;}/*** 预处理所有 isCrossUsableSeat,*/private boolean[][] preCrossUsableSeat(int seatTotal) {boolean[][] crossUsableSeat = new boolean[seatTotal][seatTotal];// seat2 每个 1 的下标 col、在 seat1 中 col-1 与 col+1 都不存在 1for (int seat1 = 0; seat1 < seatTotal; seat1++) {for (int seat2 = 0; seat2 < seatTotal; seat2++) {if (isCrossUsableSeat(seat1, seat2)) {crossUsableSeat[seat1][seat2] = true;}}}return crossUsableSeat;}private boolean isCrossUsableSeat(int seat1, int seat2) {for (int bitNum = (seat2 & -seat2); bitNum > 0; bitNum = (seat2 & -seat2)) {if ((bitNum != 1 && (seat1 & (bitNum >> 1)) > 0) || ((seat1 & (bitNum << 1)) > 0)) {return false;}seat2 -= bitNum;}return true;}/*** 二进制 1 的个数*/private int countOne(int seat) {int res = 0;while (seat > 0) {seat &= seat - 1;res++;}return res;}
}

这篇关于Leetcode 1349. 参加考试的最大学生数(Java + 按行状压暴力 + DP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538444

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S