Iptables深度解析:四表五链与动作参数

2023-12-25 21:36

本文主要是介绍Iptables深度解析:四表五链与动作参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Iptables是Linux系统中强大的网络流量控制工具,它通过四种主要的表(raw、mangle、nat、filter)和五条链(INPUT、OUTPUT、FORWARD、PREROUTING、POSTROUTING)来实现对数据包的过滤、修改和地址转换。

表的概述

在iptables中,有以下四种主要的表用于分类和管理规则:

  1. raw表:这是数据包处理的第一个阶段,主要用于决定数据包是否应被跟踪或被特定的连接跟踪模块处理。在raw表中设置的规则通常用于绕过数据包的连接跟踪。

  2. mangle表:此表用于修改数据包的标记或元数据,如TTL(Time To Live)、TOS(Type of Service)等。这些修改可以影响数据包在网络中的路由和优先级。

  3. nat表:网络地址转换表,主要用于实现源NAT(SNAT)和目标NAT(DNAT)。SNAT用于改变数据包的源IP地址,通常用于多主机共享一个公网IP的情况;DNAT则用于改变数据包的目标IP地址,常用于提供对外服务的服务器。

  4. filter表:这是默认的数据包过滤表,包含INPUT、OUTPUT和FORWARD三条链。filter表中的规则主要用于决定数据包是否应该被接受、丢弃或者继续传递。

链的作用及顺序

INPUT链

INPUT链用于处理目标为本地系统的数据包。它检查数据包是否是发往本地系统的,并根据规则执行相应操作,如接受(ACCEPT)或丢弃(DROP)数据包。该链的顺序为:

  1. raw表中PREROUTING链
  2. mangle表中PREROUTING链
  3. NAT表中PREROUTING链
  4. filter表中INPUT链
  5. mangle表中INPUT链

OUTPUT链

OUTPUT链用于处理由本地系统发出的数据包。它检查数据包是否由本地系统发出,并根据规则执行相应操作。该链的顺序为:

  1. mangle表中OUTPUT链
  2. NAT表中OUTPUT链
  3. filter表中OUTPUT链
  4. raw表中OUTPUT链

FORWARD链

FORWARD链用于处理通过系统转发的数据包。它检查数据包是否需要通过系统转发,并根据规则执行相应操作。该链的顺序为:

  1. raw表中PREROUTING链
  2. mangle表中PREROUTING链
  3. NAT表中PREROUTING链
  4. filter表中FORWARD链
  5. mangle表中FORWARD链

PREROUTING链

PREROUTING链用于在数据包到达网络协议栈之前进行处理。它允许修改数据包的目标地址,并决定数据包的路由方向。该链的顺序为:

  1. raw表中PREROUTING链
  2. mangle表中PREROUTING链
  3. NAT表中PREROUTING链

POSTROUTING链

POSTROUTING链用于在数据包离开网络协议栈之前进行处理。它允许修改数据包的源地址,并决定数据包的发送方向。该链的顺序为:

  1. mangle表中POSTROUTING链
  2. NAT表中POSTROUTING链
  3. raw表中OUTPUT链

动作的含义

在iptables规则中,可以使用多种动作来对数据包进行处理。以下是常用动作的含义:

  • ACCEPT:接受数据包,允许其通过防火墙。
  • DROP:丢弃数据包,阻止其通过防火墙。
  • SNAT:源地址转换,修改数据包的源 IP 地址。
  • DNAT:目标地址转换,修改数据包的目标 IP 地址。
  • MASQUERADE:伪装,用于动态地址转换,将私有 IP 地址转换为公共 IP 地址。

参数的使用

在iptables规则中,可以使用以下参数来匹配和处理数据包:

  • -s:源地址参数,用于匹配数据包的源 IP 地址。
  • -d:目标地址参数,用于匹配数据包的目标 IP 地址。
  • -m:模块参数,用于加载指定的扩展模块,如状态跟踪(state)模块、TCP/UDP 端口模块等。
  • -p:协议参数,用于匹配数据包的协议类型,如 TCP、UDP、ICMP 等。

这些参数可以与规则中的条件和动作结合使用,以实现对数据包的精确匹配和处理。

总结,iptables通过灵活运用四表五链和各种动作参数,能够实现精细的网络流量控制和安全策略。理解这些基础概念和用法,对于管理和优化Linux系统的网络环境至关重要。

这篇关于Iptables深度解析:四表五链与动作参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/537028

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实